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Design Metaphors for Understanding User Expectations
of Socially Interactive Robot Embodiments

NATHANIEL DENNLER, CHANGXIAO RUAN, JESSICA HADIWIJOYO, BRENNA CHEN,
STEFANOS NIKOLAIDIS, and MAJA MATARIĆ, University of Southern California, USA

The physical design of a robot suggests expectations of that robot’s functionality for human users and
collaborators. When those expectations align with the robot’s true capabilities, users are more likely to adopt
the technologies for their intended use. However, the relationship between expectations and socially interactive
robot design is not well understood. This paper applies the concept of design metaphors to robot design and
contributes the Metaphors for Understanding Functional and Social Anticipated Affordances (MUFaSAA) dataset
of 165 extant robots and the expectations users place on them. We used Mechanical Turk to crowd-source
user expectations over three user studies. The first study (N=382) associated crowd-sourced design metaphors
to different robot embodiments. The second study (N=803) assessed initial social expectations of robot
embodiments. The final study (N=805) addressed the degree of abstraction of the design metaphors and the
functional expectations projected on robot embodiments. We performed analyses to gain insights into how
design metaphors can be used to understand social and functional expectations of robots and how these data
can be visualized to be useful for study designers and robot designers. Together, these results can serve to
guide robot designers toward aligning user expectations with true robot capabilities, facilitating positive
human-robot interaction.

CCS Concepts: • Human-centered computing → HCI theory, concepts and models; Empirical studies
in HCI; • Computer systems organization→ Robotics.
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1 INTRODUCTION
Human-robot interaction (HRI) research aims to develop robotic systems that can aid humans in a
variety of different contexts. While advances in HRI have enabled robots to be more functionally
performant and socially competent than ever, few robots are present in everyday life. The lack of
adoption is in part due to concerns about user acceptance, which is linked to user expectations
[19, 22, 59]. In socially interactive robots [33], these expectations are formed around two high-
level concepts: the robot’s functional capabilities (i.e., how well it can perform the task it is
designed to do) and the robot’s social capabilities (i.e., how natural interactions with the agent are)
[19, 23, 33, 43]. Setting expectations too low results in robots that are expected to be useless while
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Fig. 1. Examples of robots’ physical designs measured by abstraction level along three different design
metaphors.

setting expectations too high leads to disappointment when robots fail to meet those expectations.
Both scenarios inhibit acceptance and adoption. While software changes can rapidly change
functional and social capabilities to align with user expectations, physical designs of robots have
much longer development cycles. In order to inform robot embodiment design, it is crucial to
understand the effect of robots’ physical appearances on their social and functional expectations.
The problem of understanding the implications of design on system use has long been a topic

of interest in human-computer interaction (HCI) [73, 112]. A powerful tool for addressing this
problem is the concept of design metaphors [17, 21], which link novel designs with extant and
familiar concepts or interactions. For example, a computer desktop shares many similarities with a
physical desktop: a user can sort, organize, and label files by placing them in physically/visually
co-located folders. By using these design metaphors, HCI practitioners are able to accurately set
user expectation about actual system functionality. While previous work has focused on functional
system behavior, design metaphors have recently been applied to social chatbots, indicating that
selecting metaphors to align social expectations with true social capabilities drives user acceptance
of these systems [51].

However, robots are significantly different from computers because robots are physically embod-
ied [23]. While computers can also be treated as social actors [74], physical embodiment increases
the social presence of robots by affording several signaling modalities that are not available to
computers (e.g., gesture [85], gaze [4], and proxemics [71]). Physical expressiveness introduces com-
plexities in user expectations, as specific aspects of a morphology designed for functional tasks may
cause users to also expect competence in social tasks–a robot with an arm that grasps objects may
reasonably be expected to use that arm to gesture. This duality of use for both functional and social
expectations has lead to the exploration of robot embodiments as a sum of their low-level design
features to understand how expectations are formed in anthropomorphic robots [79], zoomorphic
robots [64], and rendered robot faces [49]. We argue that design metaphors, as illustrated in Figure
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1, offer a broader and more holistic view of robot embodiment that can inform socially interactive
robot design in complementary ways to component-based approaches. Particularly, robot designers
and HRI practitioners can use design metaphors to quickly find similar robots to understand how
people expect to interact with novel robots. Comparing robots based on design metaphors is much
easier than comparing hundreds of low-level features.

In this paper, we introduce design metaphors as the conceptual tool for addressing the problem
of understanding user expectations of robots based on their physical designs. We evaluate this
tool by collecting a dataset of 165 extant robot designs and exploring four core research questions
related to embodiment:

(RQ1.) How can we crowd-source design metaphors to describe how potential end-users
conceptualize socially interactive robots?

(RQ2.) To what extent does a robot’s embodiment establish social expectations in relation
to its identity and social characteristics (e.g., role, likeability, and social perceptions)
and how are these expectations moderated by design metaphors?

(RQ3.) To what extent does a robot’s embodiment establish functional expectations in
relation to its capabilities and expected use cases and how are these expectations
moderated by design metaphors?

Because of the interplay of social and functional expectations identified in prior work [19, 43, 105],
we also aim to understand:

(RQ4.) How are social and functional expectations related in socially interactive robots and
what does this imply for the design of socially interactive robots?

In addressing these questions, this work contributes the Metaphors for Understanding Functional
and Social Anticipated Affordances (MUFaSAA) dataset, an open-source collection of 165 robot
embodiments and results of three crowd-sourced studies that provide insights toward the effect
of robot design on user expectations of robot capabilities. This paper is organized as follows.
Section 2 describes the related work in design metaphors, social expectations, and functional
expectations. Section 3 describes the data collection process for the contributed dataset. The
first study (N=382) is detailed in Section 4 and associates crowd-sourced design metaphors with
robot embodiments. The second study (N=803) is detailed in Section 5 and assesses initial social
expectations of robot embodiments. The third study (N=805) is detailed in Section 6 and addresses
the degree of abstraction of the design metaphors and the functional expectations projected on
robot embodiments. Section 7 examines trends in the designs of socially interactive robots across
social and functional expectations. To evaluate the usefulness of the dataset, we show how viewing
robots through design metaphors can contextualize and extend prior work in HRI, focusing on
social and functional expectations. We discuss the implications of using metaphors as a tool for both
interaction designers and robot designers in Section 8. To support replicable research, the collected
dataset and interactive data visualizations to explore the dataset are made publicly available at
interaction-lab.github.io/robot-metaphors/.

2 BACKGROUND AND RELATEDWORK
This section provides background about design metaphors and understanding user expectations.
Our work extends those methods toward studying the formation of user expectation about robot
embodiment. We present a review of past work that aimed to achieve similar goals regrading robot
design and identify how our contributions contextualize findings from that past work.
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2.1 Understanding Design Through Metaphors
Design metaphors concisely describe complex ideas by associating unfamiliar objects with familiar
objects that have similar characteristics. Design metaphors are extensively studied in human-
computer interaction (HCI) as a way to help users develop mental models of the system they are
interacting with in order to facilitate interaction [48, 51, 52, 102]. For example, HCI research shows
that describing a chatbot with different design metaphors shaped user perceptions of the chatbot’s
warmth and competence, thereby affecting both the users’ pre-interaction intention to use the
system and their subsequent intention to adopt the system post-interaction [51].
The notion of design metaphors has also been recently applied to formalizing general design

processes for socially interactive robots [24]. Deng et al. [23] provide a comprehensive review of
HRI studies through the lens of design metaphors of the robot embodiments used and provide
a design-metaphor based analysis of the relationships between different user studies and their
outcomes. We apply this framework to explore how design metaphors shape the formulation of
social and functional expectations of robots, aiming to enable HRI practitioners to contextualize
their study findings relative to user expectations resulting from a robot’s design.

2.2 Social Perception of Robot Embodiment
Past work in psychology, HRI, and HCI has shown that people form social expectations from
initial impressions [15, 32, 59, 70]. Specifically in HRI, the embodiment hypothesis [103] states
that a robot offers more channels (e.g., gesture and proxemics) to more strongly establish social
expectations compared to computer-based agents. Thus, research in HRI must examine how those
impressions are formed to understand how robots can socially interact with people while aligning
with those expectations. Quantifying expectations, however, poses a significant challenge. Previous
works have proposed specific measures that affect certain aspects of interaction, such as cuteness
[18], credibility [110], animacy [7], and predictability [31]. However, these measures tend to focus
on a single dimension of interaction in a particular context. To unify measures across contexts,
Carpinella et al. [16] proposed RoSAS, a high-level scale that measures general attitudes toward
robots through three constructs: Warmth, Competence, and Discomfort. In this work, we use the
RoSAS scale to assess general social expectations of robots without tying the robots to a specific
context.

In addition to social expectations that result from the robot’s design, there are also components
of social perception that arise from the interaction of the user’s unique identity and the robot’s
design. Social Identity Theory includes a large body of research indicating that people react more
favorably to other agents that share similar identity traits [98]. Higher degrees of identity closeness
facilitate positive interaction metrics within people: cooperation [38], group cohesion [13], and
moral evaluation [84]. Similar effects have been found when a robot is a partner in an interactive
setting [34, 90]. While social identity is a highly complex phenomenon, recent research in HRI
and HCI has increasingly focused on gender as a salient form of identity established through
embodiment that may affect interaction in a variety of contexts [10, 57, 97]. Throughout this
work, we examine how design metaphors may shape the identity of robots and how that impacts
human-robot interaction.

Together, these general measures of social perception and identity enable HRI researchers to more
easily compare perception of robots across disparate contexts. However, current comparisons of
robot embodiment typically involve only a few robots performing similar tasks [54, 62, 101, 104]. To
address this limitation, there is a need for a large-scale aggregation and comparison of embodiments
in a centralized dataset in order to examine how design trends may affect social perception across
contexts [65].
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Efforts aimed at constructing such datasets to date focus on a specific construct of a robot’s
design (e.g., anthropomorphism [79] or animal-likeness [64]), and on quantifying that specific
construct. Those data-driven approaches are crucial for understanding the studied constructs, but,
in the context of design, several criteria may be optimized concurrently [24]. Kalegina et al. [49]
addressed the multi-dimensionality of design by providing a dataset that relates multiple constructs
from the Godspeed questionnaire [8] to the design of rendered robot faces, but did not focus on
how the robot’s embodiment may additionally modulate these constructs. In this work, we aim
to address the gap in understanding multiple facets of embodiment design through the validated
RoSAS scale for robot embodiments.

2.3 Functional Perception of Robot Embodiment
In addition to social expectations, functional performance of robots is the key evaluation metric
of robotic systems. In HRI, robots are frequently meant to perform tasks that aid people, such as
fetching objects [46], cooking [11, 111], folding clothes [106], and other physically assistive tasks
[25, 50]. A robot’s embodiment is naturally a key determinant of its functional performance on
any such task. For example, a robot with no means of manipulation will not be able to retrieve an
object, no matter how effective and robust its perceptual and planning algorithms may be. This
work focuses on quantifying the expectations of functional performance that users place on robots
based on their embodiment.
In robotics, an affordance is a fundamental type of interaction with the environment that is

possible due to the robot’s sensors and actuators [37]; a robot with wheels is afforded the ability
to move through its environment, an action that an end-user may want the robot to perform.
Affordances have been used in variousmethods of classifying robots relative to people’s expectations
of those robots’ behaviors. One such method grouped robots by their sensors and actuators [47, 108].
Using that framing, a robot can be represented as a graph of sensors attached to the constituent
robot components [47]. While this framing is useful, it may be incongruent with a user’s perception
of the robot’s functionality. For example, a robot with a screen-rendered face with eyes may be
expected to visually perceive its environment, despite not having a camera.
To address this issue, other researchers have grouped robots by the tasks people expect them

to perform [12, 19, 49, 82], capturing user expectations within a robot’s ability to perform those
specific tasks. However, comparing robot designs across tasks remains challenging, in turn making
it difficult to understand how general purpose robots may work across tasks. Hoffmann et al. [42]
proposed the EmCorp scale–a high-level psychometric scale of expected robot capabilities from
factor analysis that expresses perceived capability from three areas: perception, movement, and
manipulation. By using this scale, disparate embodiments can be compared across tasks.
Accurately understanding human expectations of robot functional performance is important

because functional performance is directly related to the trust users place in a robot [40]. Trust
is a key component of adoption of a system, and is intensively studied in human factors and HRI
[20, 40, 53, 76, 89]. Trust is usually evaluated through interactions with a robot [40]. Intuitively,
when a robot performs successfully, trust is increased, while when a robot fails, trust decreases.
However, the strength of this effect on trust depends greatly on how users perceive the robot’s
embodiment [40, 54]. While we were not able to have users interact with the system in the presented
study (because of pandemic restrictions), we were able to provide initial expectations of the robot’s
functional affordances, which provide designers with insights about the aspects of the robot that
need to align with user expectations and understand the effects robot failures.
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3 COLLECTING A DATASET OF ROBOT EMBODIMENTS
To study user expectations of robots based on robot embodiments, we assembled the MUFaSAA
dataset of 165 unique existing robots and codified those robots based on low-level design features.
We then performed three studies on Amazon Mechanical Turk (MTurk) to evaluate our research
questions (from Section 1) that relate design metaphors to social and functional expectations. By
assembling the dataset to include robots from a variety of sources and outlining a process to create
reproducible composite images as used in our dataset, we aim to enable replication and extension of
this dataset to include novel robot designs as they continue to emerge. We describe the methodology
and justifications for creating the composite images used in our dataset in the following section.

3.1 Data Collection Methodology

(a) Composite image for Aeolus. (b) Composite image for TJBot.

Fig. 2. Example composite images from the MUFaSAA dataset.

Due to the immense cardinality of the design space of robots in widely varied contexts (i.e.,
drones, autonomous vehicles, industrial robots, etc.), we limited the scope of our dataset to those
that fit the definition of socially interactive robots as proposed by Fong et al. [33]. Unlike Fong
et al. [33], we do not require high-level dialogue so we can include non-humanoid embodiments.
Thus, our dataset inclusion criteria were robots that had or could be perceived as having all of the
following capabilities:

• The ability to perceive and express emotion.
• The ability to learn or recognize other agents.
• The ability to establish and maintain social relationships.
• The ability to use natural cues for social interaction (e.g., gaze or gesture).
• The ability to exhibit a distinctive personality or character.
• The ability to learn social competencies.

Using those guidelines, we assembled a collection of 165 robots from the IEEE "ROBOTS: Your
guide to the world of robots" site [91] and Google searches of "Social Robot", "Socially Interactive
Robot", "Socially Assistive Robot", "Robot Pet", and "Social Robot Animal". Google searches were
performed under several user profiles and in incognito modes to mitigate the effects of prior search
histories and stored user information. The data collection took place in June of 2020.
Each robot was represented with a composite image consisting of two high-resolution images,

one of a front view and one of a side view of the robot, to convey the 3D structure of the robots’
design. The sense of scale was provided by including a common reference image: a 170 centimeter
tall gender-neutral silhouette for robots at/over 80 centimeters in height or a silhouette of a 18
centimeter tall human hand for robots under 80 centimeters in height. The image backgrounds
were solid white, to control for contextual factors, cues, and influence. In addition, any objects
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that a robot was holding in the original image were edited out. We prioritized the use of images
of robots in neutral poses with neutral facial expressions (for robots that had actuated faces). All
composite images were created with identical aspect ratios and each view of the robot robot took
up 30-40% of the composite image by width. Two example composite images from our dataset are
shown in Figure 2.

3.2 Describing Embodiments as a Collection of Features
Similar to previous work in developing robot datasets [49, 64, 79], we codified robot embodiments
with a series of manually labeled features derived from observed design patterns of the robots in the
dataset and applicable features from previous studies [49, 64, 79, 97]. In total, we labeled 43 binary or
categorical variables related to present/absent features, 4 ordinal variables related to feature counts,
and 5 continuous variables. The continuous features were directly reported by robot data sheets,
design documentation, or through manufacturer websites (e.g., height, weight, etc.). The categorical
and binary features were evaluated through images of the robot. To address potential differences
between observers of these manually defined features, two researchers independently coded all of
the robots in the dataset. We calculated the interrater reliability of the attributed low-level design
features that were not directly reported. The full set of coded features, descriptions, and interrater
reliability are provided in Appendix B.
Our coding process identified some interesting trends in the design space. For example, the

heights of the robots in this dataset appear strongly bimodal, with one peak at robots near 25cm
in height and the other peak at robots 150cm in height. The most common color of robot in our
dataset was white (101 robots), followed by blue (23 robots), and black (13 robots).

Bymanually describing embodiments in terms of low-level design features, designers can evaluate
how specific design choices may affect user expectations. Using low-level features allows designers
to adapt descriptions of embodiments to design patterns changes that come with evolving societal
tastes and trends. Within this dataset, features were developed specifically for socially interactive
robots. Designers from other areas of robotics can expand the design space with relevant features
from other robot contexts.
In addition to the low-level coding of design features that allows this dataset to be compared

with other datasets, we also placed an emphasis on using design metaphors as a conceptual tool to
understand the expectations placed on a robot’s embodiment. We collect and evaluate the utility of
design metaphors in a series of three online studies.

3.3 Online Survey Design Preliminaries
Due to the nature and limitations of online surveys [86, 96, 109], we took several precautions in the
three studies we administered through Amazon Mechanical Turk (MTurk). We used the following
study participant inclusion criteria: user approval ratings of ≥ 99% for previously completed tasks,
≥ 1000 completed tasks, and normal or corrected to normal vision. Furthermore, we limited the
participants to residents of the United States in order to control for cultural factors of design
metaphors. The full set of survey questions is presented in Appendices A.2-A.4. In each study,
participants answered questions for up to five separate robots. If survey participants appeared to
stop providing meaningful answers as described below, their survey ended before five robots were
viewed, and participants were paid for the robots they viewed, as approved by the IRB protocol
(UP-18-00510).

In addition to the inclusion criteria, several measures were taken throughout the survey to protect
against non-human MTurk participants. We employed a "honeypot" question that was invisible on
the survey, but visible through the HTML files, thereby identifying non-human participants when
answered. Participants who responds to this question were excluded from the study. Additionally,
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we employed random attention checks that instructed participants to answer a question by selecting
a specific option to continue the survey, requiring a careful reading of the question. For quantitative
questions, if the user responded with all neutral responses, their survey ended early and the data
were discarded. For qualitative questions, if the user responded with identical text strings to ones
that they had used previously (indicating copy-pasting), their survey ended early and their data
were discarded.

As part of the study design process for all three studies, we first pilot-tested with 10 naïve users.
The data from those pilot tests were used to confirm the reliability of any modified scales and
to understand the expected time to complete the surveys in order to inform pricing, following
recommendations from [87]. The pilot study participants were excluded from the analysis of the
full studies. To analyze the studies, all statistics presented in this manuscript were calculated using
the Pinguoin library for Python [100].

4 STUDY 1: ATTRIBUTING DESIGN METAPHORS TO EMBODIMENTS
The first study we conducted addresses RQ1: How can we crowd-source design metaphors to describe
how potential end-users conceptualize socially interactive robots? We developed an MTurk study
design to associate user-reported design metaphors with robots. We then compiled the findings
for each robot in the dataset to create three user-reported design metaphors for each robot in the
dataset.

4.1 Metaphor Survey Design
Participants were paid US$1.00 per robot for which they provided 2-5 design metaphors. Partici-

pants viewed up to five robots that were presented in a randomized and counter-balanced manner.
Each response took about 3 minutes, and the whole survey took around 15 minutes.

4.1.1 Qualitative Measures.
To attribute design metaphors to each robot in the dataset, we developed three qualitative

questions to allow participants to freely associate familiar concepts with the designs of robots in
our dataset. In addition to specific metaphors, we asked users to explain their thought process
by indicating what aspects of the robot represented the metaphors they provided. We asked the
following three questions:

(1) Description of Robot: We provided an open-form response box with the prompt to describe
the robot to a friend using two to three sentences.

(2) Related Design Metaphors: We provided an open-form response box to input at least two and
up to five specific persons, animals, plants, characters, or objects that the robot looks like.

(3) Reasoning for Related Design Metaphors: We provided an open-form response box to describe
why the aforementioned design metaphors were chosen. This box was immediately to the
right of the previous response box.

4.2 Study 1: Design Metaphor Results
Due to the unconstrained nature of the design metaphor survey, our analysis focused on the
qualitative analysis of the user-reported design metaphors. We present an overview of the specific
metaphors used to describe the embodiments in our dataset and develop a coding scheme of the
metaphors based on prior work. We evaluate if our coding system is reflective of findings from
other works to demonstrate the ecological validity of our coding system.

4.2.1 Overview of Collected Data.
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Fig. 3. Histogram of metaphor counts for metaphors that were associated with more than one robot in the
dataset. The additional 129 singleton design metaphors are not shown. The specific sources of the referential
metaphors (e.g., movies, shows) are removed for visualization, but were provided to participants during data
collection.

A total of 382 participants took part in the study. Full demographic information is shown in
Appendix A.1. We collected 1716 responses for the 165 robots in the dataset. Answers that did not
provide specific persons, animals, plants, characters, or objects (i.e., "good", "nice", or paragraphs of
copy-pasted text) were excluded from analysis. The removal of these responses did not result in a
difference from the original distribution of responses, as evidenced by a chi-square test 𝜒2 (1, N =
165) = 12.62, 𝑝 > .999. This indicates that the excluded answers followed a uniform distribution
and that the assignment of robots did not cause the participants to provide non-specific answers.

4.2.2 Metaphor Summary.
The participant-sourced metaphors were unconstrained in the data collection with several

metaphors appearing repeatedly throughout the dataset. For each robot, we calculated the top
three metaphors by number of responses, grouping together similar responses for each robot; i.e.,
synonyms or hyponyms. This resulted in the final set of design metaphors that we consider in our
dataset. The frequency of metaphors approximated an exponential distribution, as shown in Figure
3, with a few metaphors being highly used for several robots across the dataset.

In total, 199 metaphors were used by the participants to describe all the robots in the dataset. As
in previous studies, we assigned each design metaphor to one of the following groups: anthropo-
morphic, zoomorphic, or mechanical [49, 62, 108]. These broad categories form the groups that
will be compared in the subsequent user studies.

Metaphorswere sorted into these categories by their literal interpretations; all nonlivingmetaphors
were considered mechanical, living metaphors that represented animals were considered as zoomor-
phic, and living metaphors representing humanoids were considered anthropomorphic. Of the 199
metaphors, 46 were classified as anthropomorphic, 46 were zoomorphic, and 107 were mechanical.
In addition to the broad types of metaphors, we observed that 38 of the metaphors were references
to specific robots from popular media, such as Disney’s WALL-E and The Jetsons’ Rosey the Robot.

4.2.3 Robot Metaphor Category Ascription and Manipulation Verification.
To quantitatively compare between the different embodiments in the dataset, we categorized

each embodiment into one of the three broad groups identified above. Embodiments were assigned
to be either anthropomorphic, zoomorphic, or mechanical based on the majority of the top three
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design metaphors. For robots with one of each kind of metaphor, we chose the metaphor with the
highest number of responses. Based on these criteria, the dataset consisted of 46 anthropomorphic,
28 zoomorphic, and 91 mechanical robots.

To verify that these groups are meaningful, we performed a manipulation check with the open-
source ABOT database [79], a collection of similar robots that are rated on their human-likeness.
We selected the robots that occurred in both datasets and compared their human-likeness to
verify that the assignment of the three categories were meaningful. The intersection of the two
datasets contained 44 mechanical, 36 anthropomorphic, and 6 zoomorphic robots. Using a Welch’s
ANOVA test for unequal group sizes, we found that robots with both mechanical metaphors
(𝑀ℎ𝑢𝑚𝑎𝑛−𝑙𝑖𝑘𝑒𝑛𝑒𝑠𝑠 = 23.58) and zoomorphic metaphors (𝑀ℎ𝑢𝑚𝑎𝑛−𝑙𝑖𝑘𝑒𝑛𝑒𝑠𝑠 = 30.61) were significantly
less human-like than robots with anthropomorphic metaphors (𝑀ℎ𝑢𝑚𝑎𝑛−𝑙𝑖𝑘𝑒𝑛𝑒𝑠𝑠 = 47.87), with
Welch’s F(2,14.60) = 17.92, 𝑝 < .001, 𝜂2 = .33. This affirms that our assignment of robots to
metaphor types is reflective of findings from other relevant datasets.

4.3 Discussion of Metaphor Findings
In the first study, we developed a method for users to freely associate robots with known con-
cepts. We found that collecting free-response data reliably probed users’ expectations and similar
metaphors coalesced across several users for the same robot. By cross-referencing the metaphors
used to describe the robots in our dataset with the ABOT database [79], we found that the user-
reported design metaphors were meaningful representations of the robots. in particular, we find
that measurements of robot anthropomorphism align with the design metaphors we collected.

Anthropomorphism is a salient aspect of a robot’s embodiment that impacts the robot’s likeability,
expected intelligence, and expected empathy [113], and has been studied in HRI [27]. However,
highly anthropomorphic robots may elicit unreasonable expectations that are not achievable in
current systems, inhibiting adoption [27]. Considering the socially interactive robots that comprised
our dataset, we found that the majority were not perceived as representing anthropomorphic design
metaphors. Design metaphors therefore offer an extension to measurements of anthropomorphism
and allow the comparison of a more diverse range of robots.
Interestingly, we observed that the robots in the dataset were described with metaphors that

ranged from generic concepts to specific examples of characters from popular media. The relatively
high and repeated occurrences of design metaphors that represented fictional characters point to
popular media as a source of understanding robots. This mirrors the body of work in Cultivation
Theory [36] that has identified that media shapes people’s perception of the world. A previous
study by Banks [6] applied this theory to robots and found that the amount of fictional robots
that participants could recall from media affected intentions to interact with a single real socially
interactive robot. Other studies have found similar links between the types of robots that participants
can recall from media and the participant’s social evaluation of robots [45, 94]. Design metaphors
may serve as a helpful conceptual tool to understand how exposure to robots from the media may
shape users’ expectations across robots, especially those that resemble fictional robots from the
media. In the second study, we examined in detail how social expectations may be formed based on
these design metaphors.

5 STUDY 2: SOCIAL EXPECTATIONS
The goal of the second study was to address RQ2: To what extent does a robot’s embodiment establish
social expectations of robots in relation to the robot’s identity and social characteristics and how are
these moderated by design metaphors? We measured the social attributes of robots that formed
the expectation of how a robot should socially behave. The interface for the study is described in
Appendix A.3.
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5.1 Study Design
The study followed a mixed design wherein each participant provided ratings for up to five

robots in the dataset. Participants that did not pass the attention checks ended the study early. The
assignment of robots was randomized and counter-balanced. Participants were paid US$0.20 per
robot they rated, and took a median of 1.5 minutes per robot for an expected maximum length of
7.5 minutes to complete the survey.

5.1.1 Quantitative Measures.
To evaluate the social expectations of robot embodiment, we assembled a collection of question-

naires from relevant areas of HRI to measure general social constructs that can to be applied to a
wide variety of robots. Our goal is to enable other researchers to contextualize robot embodiments.
Guided by that goal, we collected quantitative evaluations of the following constructs:

(1) RoSAS Scale: We used a modified version of the validated RoSAS scale [16] to assess the
constructs originally defined in RoSAS that were confirmed to be reliable in the pilot study
(Section 3.3). All items followed the prompt "Indicate how closely the following words are
associated with the robot" and were rated on a 7-point Likert scale of "strongly disagree" to
"strongly agree". The scale measured the following constructs:
• Warmth is related to the perception that another agent may want to help or harm us.
• Competence is related to the perception that another agent has the ability to help or harm
us.

• Discomfort is related to the awkwardness of a robot.
(2) Robot Gender Expression: While gender is a complex social phenomenon, we measured

perceived gender expression as proposed by the Bem Sex-Role Inventory Scale [9], using
two axes– masculinity and femininity–as 7-point Likert scales. This approach allowed for
perceptions of androgyny and non-gendered robots within the two axes.

(3) Social Role: The social role is a measure of the interaction dynamics between the person and
robot in an interaction [23, 81]. We used a 9-point differential scale from Deng et al. [23],
where 1 labeled the robot as "a subordinate", 5 labeled the robot as "a peer", and 9 labeled the
robot as "a superior".

(4) Identity Closeness: Identity closeness measures the degree of in-group identification of the
person with the robot [95]. We used a 9-point differential scale where 1 corresponded to the
rater viewing the robot as "not at all like me", and 9 corresponded to the rater identifying the
robot as "exactly like me". This scale has been shown to achieve high validity and reliability
in related contexts [83].

(5) Likeability: Likeability measures the general attitude toward a robot, and has been used in
other robot assessment studies [49, 68]. It was assessed using a 9-point differential scale, where
1 indicated the rater "strongly dislikes" the robot, and 9 indicated that the rater "strongly
likes" the robot, adapted from the Godspeed Scale [8].

5.1.2 Qualitative Measures.
In addition to quantitativemeasures, we also employed qualitative evaluations of social perception.

In particular, we were interested in open-ended responses to what participants liked about the
robot, in order to glean participants’ thought processes behind their quantitative ratings. We asked
for qualitative evaluation of the following:

(1) Reasoning for Likeability Rating: In addition to the likeability rating, we collected an optional
open-ended response about the reasons for liking or disliking a robot.
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Fig. 4. Differences in means for anthropomorphic, zoomorphic, and mechanical embodiments for social
constructs of embodiment. All differences are significant with 𝑝 < 0.001 unless marked otherwise. Error bars
represent 95% CI of means.

5.2 Study 2: Social Perception Results
Our analysis of the second study addresses social characteristics of robot embodiments motivated
by prior work and our research question, namely social expectations and social identity. First, we
explored how design metaphors shape high-level social expectations of robots. Second, we explored
how design metaphors may shape a robot’s identity through two perspectives: the robot’s ascribed
gender (robot-centric) and the participants’ self-reported identity closeness (participant-centric).

5.2.1 Overview of Collected Data.
A total of 803 participants took part in the study. Full demographic information is shown in

Appendix A.1. We collected 3481 ratings from the participants for the 165 robots in the dataset.
Participants who failed random attention checks ended the survey early. Entries that provided
nonsensical answers to the qualitative questions or behaved randomly on the questionnaire were
excluded. A total of 3155 responses were ultimately included in the analysis. A chi-square test
showed that the exclusion of these 326 responses did not significantly affect the uniform distribution
of assignment, 𝜒2 (1, N = 165) = 72.83, 𝑝 > .999, indicating that it is unlikely that certain robots are
more associated with excluded answers than other robots. The modified version of the RoSAS scale
showed high reliability with Cronbach’s alphas of 𝛼 = 0.84 for Warmth, 𝛼 = 0.87 for Competence,
and 𝛼 = 0.81 for Discomfort. The values of the four questions that measured each construct are
averaged for analysis.

5.2.2 Metaphor Type and Social Expectation.
For the robots in our dataset, the different categorizations of robot types had significant effects

on participants’ broad social expectations with respect to the RoSAS Scale, as shown in Figure 4.
For warmth, the main effect of group type was significant, Welch’s F(2, 1382.94) = 9.28, 𝑝 < .001,
𝜂2𝑝 = .005. Post hoc analysis revealed that the mean Warmth of anthropomorphic embodiments
(M=-0.58) was significantly higher than the mean warmth of mechanical embodiments (M=-.83),
𝑝 = .001, 𝜂2 = .007, and the mean Warmth of zoomorphic embodiments (M=-.65) was significantly
higher than that of mechanical embodiments, 𝑝 = .003, 𝜂2 = .004.
The main effect of group type for competence was also significant with Welch’s F(2, 1353.95)

= 24.09, 𝑝 < .001, 𝜂2𝑝 = .016. The difference between perceived competence in anthropomorphic
embodiments (M=.86) was significantly higher than the mean competence of zoomorphic em-
bodiments (M=.50), 𝑝 = .001, 𝜂2 = .022, and the mean competence of mechanical embodiments
(M=.90) was significantly higher than the mean competence of zoomorphic embodiments, 𝑝 = .001,
𝜂2 = .026.
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Fig. 5. A visualization of the space of gender expression by robot metaphor type.

Significant differences in discomfort were also observed across robot types, with Welch’s F(2,
1399.77) = 16.13, 𝑝 < .001, 𝜂2𝑝 = .010. Zoomorphic embodiments (M=-.73) were rated significantly
lower in discomfort than mechanical embodiments (M=-.57), 𝑝 = .04, 𝜂2 = .003, followed by
anthropomorphic embodiments (M=-.31), 𝑝 = .001, 𝜂2 = .007, and zoomorphic embodiments were
rated significantly lower in discomfort than anthropomorphic embodiments, 𝑝 = .001, 𝜂2 = .042.

5.2.3 The Space of Robot Gender Expression.
In addition to broad social characteristics, we were interested in identifying how robots may

form a social identity through their embodiment. We examined user-reported perceptions of gender
as a form of a robot’s identity. To examine the space of gender expression in robots (i.e., how
masculinity and femininity are embodied [3]; see Section 5.1.1 regarding the selection of these
axes), we constructed the space according to the results of a two-tailed Wilcoxon signed-rank test.
For each robot, we independently determined if the robot’s average ratings for femininity and
masculinity were significantly above zero, significantly below zero, or the null hypothesis that the
value is zero could not be rejected. A value of zero corresponded to masculinity or femininity being
neither associated with the robot nor not associated with the robot. The cutoffs for the robots were
around average values of ±1, corresponding to "slightly agree" and "slightly disagree". The results
of this analysis are shown in Figure 5.

By separating across design metaphor classifications, we observed patterns in how robot gender
expression was perceived. Anthropomorphic embodiments were more likely to be perceived as
having a significant association with either femininity or masculinity. Zoomorphic robots were
unlikely to be associated with either masculinity or femininity. Mechanical embodiments were
more likely to have no gender expression association, but in some cases they were associated with
either masculinity or femininity.

5.2.4 Formation of Ingroups and Outgroups.
Because gender is one of many axes of identity, we additionally explored how the participants

related to the robot through our measure of identity closeness. We observed that many of the
robots in the dataset exhibited bimodal distributions, indicating that the formation of ingroups
and outgroups may occur based on the robots’ embodiments. Responses to Likert scale questions
have been shown to follow binomial distributions in past work [2]. To evaluate this possibility in
our dataset, we modeled the responses as coming from two possible models: a unimodal binomial
model and a bimodal binomial model, with priors as described below. All models were developed
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and fit to the observed data using the pymc3 framework [88]. The following describes the unimodal
model:

𝑝 ∼ 𝐵𝑒𝑡𝑎(1, 1)
𝑌 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑝, 𝑁 )

where 𝑝 represents the probability of success of a binomial trial with N repetitions. We used a
9-point Likert scale, thus N was set to 8. The prior for 𝑝 was characterized as an uninformative
Beta distribution. Y represented the values that users responded with. The following describes the
bimodal model:

𝑝𝑖𝑛𝑔𝑟𝑜𝑢𝑝 ∼ 𝐵𝑒𝑡𝑎(2, 1)
𝑝𝑜𝑢𝑡𝑔𝑟𝑜𝑢𝑝 ∼ 𝐵𝑒𝑡𝑎(1, 2)
𝑤 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (1, 1)

𝑌 ∼
∑︁

𝑖∈{𝑖𝑛𝑔𝑟𝑜𝑢𝑝,𝑜𝑢𝑡𝑔𝑟𝑜𝑢𝑝 }
𝑤𝑖 · 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑝𝑖 , 𝑁 )

The bimodal model was a weighted sum of two binomial distributions characterized with two
different probabilities of binomial trial success, 𝑝𝑖𝑛𝑔𝑟𝑜𝑢𝑝 and 𝑝𝑜𝑢𝑡𝑔𝑟𝑜𝑢𝑝 , which have weights cor-
responding to𝑤 . The ingroup and outgroup distributions had equal but opposite uninformative
priors to ensure stability across different threads of MCMC sampling, since prior research has
shown that ingroup membership is related to being closer than outgroup membership [83, 95]. All
models were evaluated with two independent sampling chains with 20,000 iterations to guarantee
convergence to the observed posterior distribution.
The binomial model was selected over the unimodal model if it was more than 10 times more

likely based on the Watanabe Aikiake Information Criterion (WAIC) for the observed data. We
found that of the 166 total robots, 60 were best described with the unimodel model of group
membership, and 106 were best described with the bimodal model of group membership. A Chi
Square test revealed that the distributions of metaphor types within these groups were significantly
different from each other, 𝜒2 (2, 𝑁 = 166) = 59.33, 𝑝 < .001, with anthropomorphic and mechanical
metaphors being more represented by unimodal model and zoomorphic robots being more often
represented by the bimodal model. This suggests that zoomorphic robots were more likely to form
ingroups and outgroups than anthropomorphic or mechanical designs. However, the majority of
robots across all categories formed ingroups and outgroups based on their design.

5.3 Discussion of Social Expectation Findings
The social perception study revealed three key insights in the space of social expectations and
identity characteristics of robots. First, the robots in our dataset showed clear differences in social
expectations based on the categories of their design metaphors. Second, design metaphor categories
were related to differences in how gender was attributed to the robots. Third, design metaphor type
affected the formation of ingroups and outgroups in user-reported identification with the robot.

The finding that social expectations vary by metaphor type extends work that found differences
in social attributes of different robot morphologies [62]. Design metaphors offer a framework to
attribute robots to different conceptual categories, which may not be clear from simply looking at
the robot design. Additionally, the social expectations data we collected can help to understand
how expectations may be unmet or exceeded based on the robot’s actual social skills. Furthermore,
the results can inform discrepancies that may arise in studies using different robots for similar
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social tasks (e.g., those highlighted in sign language learning [55], cooking instruction [54], and
conversational tasks [77]), and can support reproducibility in HRI research[99].

In addition to general social expectations, we found that robots from different metaphor categories
have differences in perceived gender. Previous work on understanding gender in robots has focused
on anthropomorphic embodiments [29, 57, 78, 80, 97]. Our work shows how perception of gender
may be different for other forms of embodiments.We show that the design space of gender in socially
interactive robots merits further exploration, similar to Perugia et al. [78], and replicate the findings
that anthropomorphism is an important factor in participants perceiving a robot as gendered.
There are relatively few robots in the dataset that portrayed both highly masculine and highly
feminine characteristics of gender expression. One anthropomorphic robot did exhibit masculine
characteristics and some degree of feminine characteristics. Interestingly, we also observed that
anthropomorphic andmechanical embodiments tended toward not being associated with femininity,
while zoomorphic embodiments tended slightly toward not being associated with masculinity. This
suggests future directions of design research that could explore how to balance these trends in
the current design space, in particular toward improving interaction metrics with marginalized
genders [107].

Beyond gender, our results also extend work on sharing identities with robot partners. Previous
work found that group membership can be established through personality modulation [30]. We
found that the differences in embodiment may also establish different forms of group membership.
This supports past findings that establish groups based on robot color [56], but also applies to robot
embodument more broadly. Our dataset provides insights into how these groups may form for
different embodiments, enabling research into group membership questions, since embodiment is
difficult to change compared to behavior, personality, and cosmetic details. In the next study, we
examined the functional affordances of what a robot can do in the world, without the context of its
social capabilities.

6 STUDY 3: FUNCTIONAL EXPECTATIONS
The goal of the third study was to address RQ3: To what extent does a robot’s embodiment establish
functional expectations in relation to its capabilities and expected use cases and how are these moderated
by design metaphors? The third study measured the robots’ expected functional affordances and
the attribution of expected tasks to the different robot embodiments. The interface for the study is
provided in Appendix A.4.

6.1 Study Design
The study followed a mixed design where each participant provided ratings for up to five robots.

Each rating was paid US$0.50 and took approximately 2 minutes to provide, and the whole survey
had an expected length of 10 minutes. The robots each participant saw were randomized and
counter-balanced to mitigate ordering effects.

6.1.1 Quantitative Measures.

(1) EmCorp Measures: We used a modified version of the 7-point Likert EmCorp-Scale [42]
that has been validated in online survey contexts. We focused on the constructs of Shared
Perception and Interpretation, Tactile Interaction andMobility, and Nonverbal Expressiveness.
The Corporeality construct was not studied because it represents how co-present a robot is in
the room with the observer, and the robots in the dataset are 2D images. All items were rated
on a scale from "strongly disagree" to "strongly agree". The scale measured the following
constructs.
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• Shared Perception and Interpretation is a measure of a robot’s perceived perceptual capabili-
ties, such as vision and hearing.

• Tactile Interaction and Mobility is a measure of a robot’s perceived ability to move around
and manipulate objects in space.

• Non-verbal Expressiveness is a measure of a robot’s ability to use natural cues such as
gestures and facial expressions.

(2) Design Ambiguity and Design Atypicality Measures: Design ambiguity and atypicality have
been linked to aversion toward different robot designs in prior work [92]. In this work, we
defined ambiguity as the difficulty of placing a robot in a single category, and atypicality as a
robot having embodiment features not usually associated with the category it represents. We
quantify these measures with differential scales valued from 1 to 9.

(3) Metaphor Abstraction Measures: The abstraction level of a metaphor provides a way to quantify
how abstractly or literally the robot embodiment follows the metaphor. We quantified these
values as a 9-point differential scale where 1 represented "highly abstract" interpretations of
the design metaphor, and 9 represented "highly literal" interpretations of the design metaphor.

6.1.2 Qualitative Measures.

(1) Task Descriptions: We required participants to report two to five kinds of tasks each robot
would be appropriate for, using open-ended responses.

6.2 Study 3: Functional Perception Results
Our analysis of the third study addresses both how embodiment shapes perceptions of functional af-
fordances and of expected tasks. We examined how design metaphors shaped high-level perceptions
of a robot’s functional affordances through the EmCorp Scale. We additionally examined how the
abstraction level of those metaphors may affect user perception, as previous work has proposed that
abstraction is a key metric that affects functional outcomes of studies [23]. We performed qualitative
analysis to understand how embodiment type affects tasks robots are expected to perform, and for
whom robots are expected to perform those tasks.

6.2.1 Overview of Collected Data.
A total of 805 participants took part in the study. Full demographic information shown in

Appendix A.1. We collected 3,435 ratings for the 165 robots in the dataset. Participants who failed
random attention checks ended the survey early. Some responses were excluded for exhibiting
disengaged or automated behaviors, as outlined in Section 3.3.

A total of 3,092 responses were ultimately included in the analysis. A chi-square test confirmed
that the exclusion of the 343 responses did not significantly affect the uniform distribution of
assignment, 𝜒2 (1, N = 165) = 25.39, 𝑝 > .999, indicating that it is unlikely that certain robots are
more associated with excluded answers than others. The modified version of the EmCorp-Scale
showed high reliability with Cronbach’s alphas of 𝛼 = 0.91 for Shared Perception and Interpretation,
𝛼 = 0.84 for Tactile Interaction and Mobility, and 𝛼 = 0.87 for Nonverbal Expressiveness. The
values of the four questions that measured each construct were averaged.

6.2.2 Metaphor Type and Functional Expectation.
The different categorizations of metaphor type had clear effects on how participants expected a

robot to perceive and interpret the world, withWelch’s F(2, 1297.52) = 94.36, 𝑝 < .001,𝜂2𝑝 = .053. Post
hoc analysis revealed significance between all pairwise comparisons with 𝑝 < .001. Zoomorphic
embodiments were perceived as having the lowest perceptual capabilities (M=-.14), followed by
mechanical embodiments (M=.26), 𝜂2 = .018, and then followed by anthropomorphic embodiments
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Fig. 6. Differences in means for anthropomorphic, zoomorphic, and mechanical embodiments for functional
constructs of embodiment. All differences are significant with 𝑝 < 0.001, unless marked otherwise. Error bars
represent 95% CI of means.

(M=.95), 𝜂2 = .046. Therefore, anthropomorphic embodiments had a much larger difference in
perceived perceptual abilities than zoomorphic embodiments, 𝜂2 = .118.
Tactile interaction and mobility also showed differences in metaphor types, with Welch’s F(2,

1209.25) = 27.81, 𝑝 < .001, 𝜂2𝑝 = .019. All pairwise comparisons were significant in the post hoc
analysis, with 𝑝 < .001. Zoomorphic embodiments were perceived as having the lowest ability to
manipulate objects in the world (M=.84), followed by mechanical embodiments (M=-.58), 𝜂2 = .007,
then followed by anthropomorphic embodiments (M=-.22), 𝜂2 = .013. Zoomorphic embodiments
therefore had much lower perceived tactile abilities than anthropomorphic embodiments, 𝜂2 = .037.

The different forms of embodiment showed different expectations for non-verbal communication,
with Welch’s F(2, 1239.08) = 49.65, 𝑝 < .001, 𝜂2𝑝 = .032. Zoomorphic embodiments (M=-1.06) were
perceived as less capable of communicating non-verbally than anthropomorphic embodiments
(M=-.33), 𝑝 = .001, 𝜂2 = .055. Mechanical embodiments (M=-.91) were also viewed as having lower
non-verbal communicative abilities than zoomorphic embodiments, 𝑝 = .001, 𝜂2 = .033.

6.2.3 Abstraction and Functionality.
To investigate the level of abstraction of a metaphor, we selected the top two most frequent

metaphors from each category. For anthropomorphic metaphors, the two were "a person" and "a
child"; for zoomorphic metaphors they were "a dog" and "a cat"; and for mechanical metaphors,
they were "a toy" and "a vacuum". For all metaphors, the rating of functional expectations were
regressed onto the level of abstraction of the given metaphor. Significant regressions are shown in
Figure 7. The equation of the regression line is given along with the corresponding 𝑟 2 value.

For all anthropomorphic metaphors, we observed a significant increase in all perceived functional
constructs as the robots were seen as more human-like. This supports findings from Section 6.2.2,
where anthropomorphic metaphors were consistently rated as having the highest functional
expectation. This trend of increasing functional expectation as embodiments were perceived more
literally across all constructs was shown in most of the anthropomorphic metaphors that we
measured. This finding aligns with the idea of anthropomorphization of robots as assigning more
human-like abilities to these embodiments, not only socially but functionally as well [27].

For zoomorphic metaphors, we observed different trends across metaphors. For dog-like robots,
the perception and interpretation and the non-verbal expressiveness constructs significantly in-
creased as the robots appeared more like real dogs. For cat-like robots, however, only tactile
interaction and mobility construct increased with increasingly literally perceived implementations.
This difference may be a result of commonly held views about those animals in the United States
(where the study participants were from); dogs are typically seen as more attentive to their owners
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Fig. 7. Plots showing the effect of metaphor abstraction on a robot’s perceived functional characteristics.
Regression lines are shown for significant effects, after Bonferroni correction for 18 hypotheses.

Assigned Task Specific Population
Companion Home Assistant Children

Customer Service Informant Elderly
Educator Manufacturer Persons with Disabilities
Entertainer Surveillant

Table 1. A table of codes developed through qualitative analysis of the user-reported tasks for socially
interactive robot embodiments.

and are non-verbally expressive through embodied modalities such as tail-wagging [69]. Cats, on
the other hand, are seen as more passive in interaction but also as more dexterous [69].

Mechanical metaphors also exhibited different trends across metaphors in terms of their level of
abstraction. Robots described as "a toy" were seem as significantly less perceptive and interpretive
when they looked more like literal toys. A similar phenomenon was observed by Hegel et al. [41],
where users reported a Lego robot as looking like "a toy" and perceived it as simply pushing buttons,
whereas they described computers as performing calculations. Robots resembling vacuum cleaners
instead showed an increase in perceived tactile interaction and mobility as well as non-verbal
communication capabilities as they appeared more like vacuum cleaners. This is likely because
vacuums typically move around as part of the cleaning process, and robot vacuums prevalent
in popular culture (e.g., the iRobot Roomba) exhibit non-verbal communicative abilities through
modalities such as colored lights and beeping sounds.

6.2.4 Embodiment and Task.
To evaluate the task expectations of the different robot embodiments in the dataset, we developed

a coding scheme based on an iterative axial coding approach [93] and applied it to the participants’
free-response answers to the question regarding what task the robot appeared to be useful for. We
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Companion
Customer
Service Educator Entertainer

Home
Assistant Informant Manufacturer Surveillant

Anthropomorphic

Zoomorphic

Mechanical

4 22 13 14 19 11 9 4

16 1 3 21 5 2 1 5

4 29 3 31 39 42 15 19

Fig. 8. A heat map of the distribution of the top two tasks for robots in our dataset separated by their
metaphor type.

observed both task-related and intended population remarks from the participants. Eight main
task-related codes were developed and three specific population labels were identified as trends
in the design space of socially interactive robots, as summarized in Table 1. Interestingly, these
codes have considerable alignment with the task categorization used by Kalegina et al. [49], despite
being collected in an open format. The key differences we found were that we did not observe
high numbers of responses for performing research, nor for health-related tasks. Furthermore, we
observed two additional categories: being used as a companion and being used to collect or provide
information.

The companion context was characterized by tasks involving the robot acting socially to improve
mood or mental health over long periods. Examples of common tasks participants provided for
this context were robots that "provide warmth and comfort", "are an interactive friend for my
child", and "being a conversation partner". Most commonly, zoomorphic robots were described as
being appropriate for this task, with task descriptions of 16 robots aligning with this category. This
finding aligns with the zoomorphic robots’ tendency to be perceived as comforting and warm (as
found in Section 5.2.2), a key component of these tasks where functional expectation are not as
important.

Robots ascribed to customer service contexts were defined as directly interacting with people in
public places such as stores, restaurants, or hotels. Example tasks were robots that function as a
"greeter or a receptionist", "a waiter" and "a museum guide". Both anthropomorphic embodiments
(22 robots) and mechanical embodiments (29 robots) were described as being useful for customer
service-type tasks. This aligns with the high expected functionalities of these embodiments to
perform the services those tasks require.
Educator tasks were defined to involve knowledge transfer from or through the robot to a

person interacting with the robot. Tasks fitting this category involved robots that could be used "in
language education", "to interact with students in class", and to provide "light educational lessons
like spelling or math". Interestingly, a robot’s embodiment was often related to the topic that the
robot was meant to teach. For example, the baby-like robot Babyloid was described as a "a training
baby for expecting mothers", and the cat-like robot MarsCat saw suggested "to help educate about
cats". Most commonly anthropomorphic embodiments (13 robots) were assigned to tasks relating
to the educator category. This is consistent with the high perceived competence and functionality
of anthropomorphic embodiments (as identified in Section 5.2.2).
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For robots that played the role of entertainers, expected tasks aligned with short-term enter-
tainment purposes. For example, robots in this category were expected to "play music", "be used
like a toy", and "tell jokes". This category was common across all types of metaphors, however
each metaphor was described as entertaining in a specific way. Anthropomorphic metaphors were
described as being used as "a game-playing partner", zoomorphic metaphors were most often seen
as functioning like "a pet that doesn’t require attention when not in use", and mechanical metaphors
fulfilled roles that are common in other forms of technology such as "playing music".
Home assistant robots were described as being able to work within the household, performing

chores and other daily tasks, including "cleaning up after kids", "making coffee", and "carrying
groceries". These tasks are similar to the customer service task, but are distinct in that they occur in
the home and consist of repeated interaction with a few people. Similar to customer service tasks,
both mechanical embodiments (39 robots) and anthropomorphic embodiments (19 robots) were
found to be well-suited for the home assistant task.
Robots that act as informants were described with tasks that answer questions or otherwise

provide information. Common tasks in this category were robots that "verbally answer questions",
"tell time", or "report daily events like news or weather". Mechanical embodiments (42 robots) were
most frequently described as being useful for these impersonal and intellectual tasks, consistent
with their perceived high competence (as identified in Section 5.2.2).

Manufacturer robots were described in contexts where they build or move objects, typically
without constant direct human interaction. These robots were expected to "carry heavy objects", "be
a factory worker", and "pack in a warehouse". 15 Mechanical embodiments and 9 anthropomorphic
embodiments were selected for tasks like these, primarily for their functional capabilities, as these
tasks were perceived to not require social interaction.

Robots that fell in the surveillant category were those that monitor behavior, and were typically
expected to provide security in some way. These robots were expected to be similar to "security
alarms", "spy cameras", or "a sentry". Mechanical embodiments (19 robots) were most frequently
attributed to this task. Similar to informants, these types of tasks are impersonal but require high
levels of competence and perceptual capabilities, qualities that were attributed to mechanical
embodiments.

6.3 Discussion of Functional Expectation Findings
In the study of functional expectations of robots, we found three main insights that relate design
metaphors and expectations. First, we identified differences in high-level expectations of functional
affordances from EmCorp-Scale measures. Second, we showed that the level of abstraction of
different metaphors is an important consideration for establishing user expectations. Third, we
found how design metaphors and expected robot tasks were related.

Our first key finding shows that overall anthropomorphic embodiments are perceived as having
the most functional affordances, followed by mechanical embodiments, and finally followed by
zoomorphic embodiments, with the fewest functional affordances. This result is consistent with
the extensive body of work in anthropomorphism in robots [27]. The differences in functional
expectation of robots also has implications for understanding how user trust evolves. Previous
work has found that different robot error mitigation strategies were effective under different
expectations of robots [61]. Using this dataset, interaction designers will be able to understand
what user expectations are to more accurately select recovery strategies that work for the robot’s
specific embodiment.
The second key finding is related to the level of abstraction of the metaphors we collected for

each robot. We found that increasingly literal metaphors (i.e., how closely the robot resembles
a stereotypical version of the metaphor) significantly effect user expectations. Specifically, more

ACM Trans. Hum.-Robot Interact., Vol. 37, No. 4, Article 111. Publication date: August 2021.



Design Metaphors for Understanding User Expectations
of Socially Interactive Robot Embodiments 111:21

literal metaphor implementations are more closely associated with the literal interpretation of
that metaphor; literal dog-like robots shared similar expectations to actual dogs. This finding
highlights how design metaphors may be used to holistically evaluate functional perceptions of a
robot. Designers may use the data we collected to understand how novel designs may be perceived
in terms of their level of abstraction by comparing to similar existing robots in our dataset. This
opens interesting new directions in understanding how mental models of robots may be formed
through these design metaphors. Understanding mental models is crucial for creating robots that
are perceived as useful, a key factor in adoption.
Our qualitative findings of expected tasks further expand understanding of system use charac-

teristics by providing the contexts in which people expect different design metaphors to be the
most appropriate. This can help align robots to their expected use case which can help reduce
the atypicality of a robot operating in an unexpected context, which has been shown to lead to
negative evaluations of the robot [39]. It may also be used to help explain why different robots
performing the same task can often be perceived differently [54]. In our final section we address
how social and functional expectations may be jointly explored and offer interactions with this
dataset for two communities: researchers in HRI and practitioners of robot design.

7 THE INTERACTION OF SOCIAL AND FUNCTIONAL EXPECTATIONS
The final investigation of our dataset addressed RQ4: How are social and functional expectations
related in socially interactive robots and what does this imply for the design of socially interactive
robots? In this section, we provide an overview of the space of socially interactive robots.We consider
how low-level design features and high-level design metaphors may affect user expectations. We
then show that both perspectives can generate insights into the design of socially interactive robots.

7.1 Predictive Features for Each Construct
To relate the low-level physical aspects of a robot’s design to its expected social and functional
affordances, we performed statistical feature selection on the manually coded features for each
of the measured quantitative perceptual constructs. We used the Boruta algorithm [58] because it
aims to find all-relevant features (i.e., all features that carry information on the modeled construct)
as opposed to minimal-optimal features (i.e., the minimum set of features that maximize predictive
accuracy for some specific model). The Boruta algorithm selects important attributes and is stable
and unbiased when feature importance is measured with random forests of unbiased weak classifiers
[58].

We performed feature selection by creating "shadow features" of the true features by randomly
permuting the true values. Both the true and shadow features were used to predict the value of a
construct. If a true feature was given importance that was higher than its shadow feature, it was
considered useful in classification. This process was performed 500 times, for statistical validity.
Due to the exploratory nature of this work, we selected features that were more relevant than
their shadow features with a probability of 0.5. By selecting features that were relevant to specific
constructs, we presented possible directions for investigating the relationship between robots’
embodiments and their perceived expectations. Table 2 shows the selected features as they relate
to the measured constructs.

These selected features can be classified into two categories: unobservable and observed. From
the unobservable features we can analyze trends in the design space that are reflected in the overall
design of robot embodiments as opposed to specific aspects of embodiments. The main unobservable
features of importance were: Year, the year of release of the embodiment and Industry? whether or
not the robot was at one point commercially available. The year descriptor allowed us to capture the
non-stationary nature of design practices over time. Most notably, newer robots in our dataset were
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Construct Relevant Selected Features (and Relationship)
Warmth Mouth? (+)
Competence Height (+), Humanoid Embodiment? (+)
Discomfort Height (+), Year (-), Mechanical Face? (+), Industry? (-)
Femininity Height (-),Weight (-), Most Prominent Color = Beige (+),

Blush? (+), High Waist-Hip Ratio? (+), Curved Embodiment? (+)
Identity Closeness Height (+), Humanoid Embodiment? (+)
Likeability Height (-), Industry? (+)
Masculinity Height (+), Weight (+), Year (-), Curved Embodiment (-),

Jointed Limbs? (+)
Social Role Height (+), Year (-), Humanoid Embodiment? (+),

Number of Arms (+)
Perception and Height (+), Humanoid Embodiment? (+),
Interpretation Dominant Classification=Anthropomorphic (+)
Tactile Interaction Height (+), Mobile? (+), Number of Wheels (+),
and Mobility Number of Arms (+), Jointed Limbs? (+)
Nonverbal Height (+), Year (-), Humanoid Embodiment? (+),
Communication Number of Wheels (-), Number of Legs (+), Number of Arms (+),

Dominant Classification = Anthropomorphic (+),
Jointed Limbs? (+)

Design Ambiguity Height (-),Weight (-), Number of Legs (-),
Dominant Classification = Anthropomorphic (-)

Design Atypicality Weight (-), Number of Legs (-),
Dominant Classification = Anthropomorphic (-)

Table 2. The important features as selected by the Boruta algorithm from our manually coded feature set
that corresponded to the constructs measured in the survey.

in general seen as less discomforting, less stereotypically masculine, had a lower expected social
role, and had fewer non-verbal communicative capabilities. The commercially available attribute is
related to the effect that larger teams of designers were likely involved with the development of
the robot. Robots that were commercially available (had the Industry? attribute) were found to be
more likeable and less discomforting. This suggests that robots used in settings that require the
robot to be a comforting partner in interaction may benefit from using robots that are have had the
benefit of well-resourced and thorough design processes.

Of the observed features of importance, height was the most frequently selected feature across
all of the measured constructs. Height has previously been related to increased expected social
role [81] in controlled settings. Consequently, identifying height as an important characteristic in
our non-lab setting allows for generalizing its importance. Furthermore, the relationship between
height and other constructs has not been studied closely, suggesting interesting research questions
for future work.
Another trend we noted is the importance of anthropomorphism in functional constructs. In

general, robots that are seen as human-like are expected to have higher degrees of functional
capability and readiness to take on superior social roles. Such elevated expectations, however, must
be met. Thus, when using anthropomorphic embodiments, care should be taken to ensure that
robots operate to their expectation.
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(a) t-SNE plot of expected social role. (b) t-SNE plot of tactile interaction and mobility.

Fig. 9. A t-SNE visualization of the design space of robot embodiments. Each point represents one robot
in the dataset. Brown represents high values and teal represents lower values of the measured ratings.
Here we show only the front view of robots; study participants viewed composite images that included
scaling information, as described in Section 3.1. The fully interactive version of this plot is located at
interaction-lab.github.io/robot-metaphors/, where researchers, designers, and others interested in
these findings may hover over points to view robots and click on a specific robot to view its social and
functional expectations.

Our results replicated findings that related body shape to the expression of femininity in robots.
Previous work has similarly linked the relationship between robots’ waist-to-hip ratio to their
perceived gender expression [10, 97]. Additionally, Kalegina et al. [49] found a relationship between
perceived gender and the presence of blush, which we also found in our study’s ratings of femininity.
However, blush did not make robots appear less masculine in our dataset. This suggests that the
axes of femininity and masculinity in robots are not diametrically opposed.

7.2 Visualization of the Design Space
To enable other researchers and robot designers to readily benefit from our findings, we developed
an intuitive open-source visualization of our findings. Specifically, we used the hand-crafted features
developed in Section 3.2 as descriptions of the physical attributes of the robots in our dataset. To
learn a mapping without supervision from that high-dimensional feature space to 2D, we used
t-Stochastic Neighbors Embedding [66] that preserves distances between points from high-D to
2D space. Figure 9 demonstrates that robots mapped near each other share similar characteristics.
We show evaluations of different robots with different color values in 2D space. Higher values
are concentrated in different parts of the space, indicating differences in social and functional
expectations of the robot embodiments. This visualization technique can be used as a design tool
to rapidly explore different robot embodiments for a desired set of expectations related to specific
tasks.
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Fig. 10. Perceived competence and perceived perceptual ability by metaphors for different maturity levels.

7.3 Design Metaphor Semantics
We were interested in exploring whether design metaphors were semantically meaningful in terms
of user perceptions. While the semantic space of metaphors is difficult to describe, there are some
locally ordered areas. To examine the effects of social and functional perceptions, we selected three
metaphors: "a baby", "a toddler", and "a person". Because age is associated with competence [51]
and interpretation of the world, we expected that robots described with more mature metaphors
would have higher competence and perceptual capabilities.

As expected, we found that a main effect was present on metaphor name and competence with
Welch’s F(2, 127.81) = 16.55, 𝑝 < .001, 𝜂2𝑝 = .057. The perceived competence is lower for robots
labeled with the metaphor "a baby" (M=.08), followed by robots described with the metaphor "a
toddler" (M=.78), 𝑝 = .001, 𝜂2 = .09, and then followed by robots described with the metaphor "a
person" (M=.96), 𝑝 = .001, 𝜂2𝑝 = .110.
There was an additional effect on the perceived perceptual abilities of robots with Welch’s

F(2, 96.60) = 30.81, 𝑝 = .001, 𝜂2𝑝 = .120. Robots described as babies were assumed to have lower
expected perceptual capabilities (M=-.45) than robots described as toddlers (M=.67), 𝑝 = .001,
𝜂2𝑝 = .118. Robots associated with the toddler metaphor were, in turn, perceived as having lower
perceptual abilities than robots described as persons (M=1.23), 𝑝 = .001, 𝜂2𝑝 = .110. Additionally,
robots associated with the baby metaphor had significantly lower perceived perceptual abilities
than robots associated with a person metaphor, 𝑝 = .001, 𝜂2𝑝 = .212.

7.4 Correlations of Measures
We show the correlations between all measures in Figure 11. While many correlations in the large
collected dataset are significant, the coefficients of correlation are relatively small. We consider
values of Pearson’s 𝑟 > 0.5 to be of practical importance for reporting and discussion, representing
a moderate correlation in similar psychological contexts [1]. The key findings are described in detail,
with all reported correlations being significant with 𝑝 < .001 after correcting for 110 pairwise
comparisons of the 11 measures. The following are the main trends in the results.

7.4.1 Identity closeness is correlated with positive social perceptions. Identity closeness had a
moderately strong correlation with warmth (r(163)=.55) and competence (r(163)=.52). Interestingly,
the correlation with the discomfort construct was small. This is possibly related to the idea that
discomfort is a construct that uniquely applies to robots, while warmth and competence apply to
people as well as robots [16]. Furthermore, the identity closeness of the user with the robot was
strongly correlated with the robot’s likeability (r(163)=.63) and its expected social role (r(163)=.53).
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Fig. 11. Correlations between attributes collected through surveys. All shown correlations are significant,
with 𝑝 < 0.001. Pearson’s r value is shown in each square. The first six items are from the survey of social
perceptions, and the next five are from the survey of functional perceptions.

For the socially interactive robots we tested, we found that the closer the raters identified with the
robot, the more positively they viewed the robot and the more likely the were to view the robot as
a peer or superior.

7.4.2 Likeability is not significantly correlated with perceived functionality. Likeability responses
were moderately correlated with warmth (r(163)=.37) and competence (r(163)=.46), strongly anticor-
related with discomfort (r(163)=-.74), and strongly correlated with identity closeness (r(163)=.63).
However, the reported likeability was not strongly correlated with any measures of perceived
functional ability. In general, as raters felt more socially close to the robot and the design of the
robot was less discomforting, users reported liking the robot more. Changes in perceived physical
capabilities of the robot, however, did not correspond with a discernible change in how much users
liked the robot.

7.4.3 A robot’s role is correlated with its functionality. The expected social role of the robot was
strongly correlated with perception and interpretation (r(163)=.59), non-verbal communication
(r(163)=.64), and tactile interaction and mobility (r(163)=.60). The social role was also correlated
with the competence (r(163)=.51) and social identity (r(163)=.63). As functional abilities increased
for robots in our dataset, raters were more likely to view them as peers or superiors.
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7.4.4 The perceived functionalities of robots are entangled. For all pairwise comparisons of the
functional constructs from the modified EmCorp-Scale, we observed correlation values larger than
r(163)=.63. Thus, increases of one construct from this scale were associated with increases in the
other two constructs of the scale for the set of socially interactive robots we tested. This implies that
robots that appear more capable of moving through space additionally elicit higher expectations of
perceptual and interpretive abilities, as well as higher expectations of non-verbal expressivity than
robots that do not appear as capable of moving through space. These three functional constructs
can be interpreted together as a generic measure of a robot’s holistic capability to interact with
other agents and the world.

8 GENERAL DISCUSSION
The analysis of the large dataset resulting from the three studies conducted in this work demon-
strates many nuances of the design space of socially interactive robot embodiments. The results
include multiple insights that inform design processes for various robot use-cases. Specifically,
this work suggests how measuring social and functional attributes of embodiment via design
metaphors can be used to estimate and evaluate designs of robot embodiments. Toward advancing
HRI research, we identified several use-cases for this dataset specifically aimed at informing study
designers and robot designers. These tools inform the development of future socially interactive
robots and effective human-centered HRI.

8.1 Implications for Study Designers
For study designers in HRI, this dataset offers a data-driven methodology for understanding how
the embodiment of a robot may affect study outcomes. This dataset is useful for study designers by
enabling three main interactions: robot selection, task selection, and contextualizing results.

A common stage of the study design process in research labs is to choose a robot to investigate
how its interaction with humans affect outcome measures of importance. Due to the high cost of
most robots, research labs tend to have only a few different embodiments that can be potential
candidates for study. By using this dataset, researchers can make informed decisions in selecting
a robot that aligns most closely with the specific requirements of the task and research topic of
interest. Because our dataset provides multiple measures, researchers can choose those that are most
relevant to their needs and interests. For example, researchers exploring trust in delivery robots
may investigate functional expectations of the robots in the dataset, whereas research exploring
conversational dynamics may be more interested in the social measures of our dataset. By selecting
robots that align with their use-case of interest, researchers and designers will not require as much
time to learn about a robot. This is especially critical for short-term studies, where first impressions
of a robot are important for the success of the intervention.
Interaction design is a key step in the HRI study design process. In that process, it is critical to

consider user expectations of robot performance in the specific interaction. Our dataset and study
results inform researchers about baseline social and functional expectations of robots. Using these
expectations, researchers can modify their study designs to more closely align with the specific
expectations about their robots. For example, if the specific robot is not expected to have a high
degree of mobility, the interaction can be modified and simplified to not require the robot to move.
Additionally, our dataset and study results can be used to provide directions for slight but principled
modifications to robots in cases where changes to study design are not possible but where a robot’s
design can be modified. For example, a robot’s mouth can be removed if the robot is not meant to be
perceived as friendly within the study’s context, since we found that mouths increased perceived
warmth (see Table 2).

ACM Trans. Hum.-Robot Interact., Vol. 37, No. 4, Article 111. Publication date: August 2021.



Design Metaphors for Understanding User Expectations
of Socially Interactive Robot Embodiments 111:27

Our dataset and results can also provide insights that inform interpretation of HRI study results.
Findings from one specific embodiment may be more easily replicated in similar embodiments,
which can be explored through the t-SNE visualization we developed. More generally, our work
can validate if study findings may be less tied to the specific low-level design choices, and more
influenced by the design metaphors of the embodiment, or even more broadly by overarching social
and functional expectations of the robot. Thus, follow up studies could explore using this dataset
as a tool for comparing different robot embodiments. This work provides a way forward to more
effectively evaluate theories in HRI in the context of robot embodiment.

8.2 Implications for Robot Designers
For robot designers focusing on HRI, this dataset and study results offer a data-driven methodology
for determining robot designs given a set of intended task/use-case constraints. The dataset is
particularly useful to research through design [112], a paradigm that highlights the importance of the
exploratory implementation of systems to solve real-world scenarios. Such specific implementations
are called design artifacts and their production creates knowledge of different design patterns,
design processes, and other forms of design knowledge. Our dataset and findings can be interpreted
as a form of intermediate-level design knowledge [44, 65], which can be used to guide the creation of
individual design artifacts akin to other forms of intermediate level design works, such as annotated
design portfolios [35], design guidelines [63], and design patterns [60]. To effectively use this type
of intermediate-level knowledge, we describe the following three potential interactions with this
dataset inspired by data-driven visualization design [72]: browse, discover, and compare.
The browse interaction with our dataset describes looking through the extant designs that we

have collected. Designers can explore entries to discover what robots exist, and what expectations
they elicit. By looking through the data without specific aims, designers can identify holes in the
design space as well as over-saturated regions of the space. Novel designs can then be added to
the dataset to expand the space as desired. This is especially useful in iterative design processes
where a robot’s physical structure becomes increasingly stable as iterations progress [24]. Searching
can be done at different levels of granularity; initially, searching can happen across social and
functional expectations, then more specifically over design metaphors, and finally over low-level
design features. As the design becomes more concrete, the search becomes more localized in the
design space.
The discover interaction with this dataset describes the process of finding similar robots for

comparison, and modifying a design to more closely match or move away from those alternate
designs. By locating robots that are nearby in design space, designers can explore potential design
metaphors to see how closely they align with the intended use-case. For example, a designer may
examine the trend in functional expectation of making a more literal human-like robot, finding
that this increases the expected functionality of the robot. Designers can then use this information
to see how the design may need to change to reinforce desirable traits or minimize unwanted traits
for a given design context. Our dataset also allows this interaction to happen across differing levels
of granularity: at the expectation level by selecting robots of similar expectations, at the metaphor
level by examining robots with similar design metaphors, and at the feature level by exploring
robots nearby in feature space.

The compare interaction can be used by designers to evaluate the effect of specific design decisions.
If a designer needs to make a decision on whether or not to include a mouth on the robot, they
can examine how the presence or absence of a mouth may change the social perception of the
robot while also considering other constraints of the robot, such as cost and space. Because our
dataset includes an image of each whole robot, designers can use those images to define new binary
features over the set of extant robots to determine how the inclusion of a previously unexplored
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feature may affect social and functional expectations. Similar interactions can decide between
broad metaphor categories (e.g., anthropomorphic, zoomorphic, or mechanical) or individual design
metaphors to numerically evaluate differences in potential embodiment design choices.
Interactions with the dataset can be composed into a full design process to facilitate informed

design decisions. In early iterations, designers may engage with the existing robots at a high level,
by browsing through the design space by exploring the t-SNE visualization to see different clusters
of visually similar robots and their social and functional expectations. Initial designs for a specific
context may start to take specific functional and social constraints for that context, which may be
informed by exploratory prototyping. These social and functional constraints can then be evaluated
over the robots within the dataset, and specific mechanisms can be explored to address these
constraints to explore potential modifications the design. In further iterations, as the robot takes a
more concrete form, design metaphors may be applied to compare how cosmetic changes can be
made to more effectively communicate robot capabilities.

8.3 Limitations and Future Work
A key limitation of this work is the use of images to convey representations of inherently 3D robot
embodiments. Multiple views of the robots were shown in an attempt to mitigate this, but a 2D
screen cannot fully reconstruct the impression of real-world embodiments. This study design can
be readily applied to other representations of robot embodiments to expand the use of the findings.
Future work may explore alternate forms of presentation, such as 3D renderings, videos, virtual
reality, and augmented reality. Applying methods introduced in this paper allows designers and
researchers to flexibly trade off realism and data collection costs.

Additionally, social and physical contexts are not considered in this work. Contextual information
can have great impact on how a user expects a robot to behave (e.g., [5, 75]). We additionally
restricted our participants to the United States; since many metaphors and perceptions may be
culturally situated, it is not certain how the results generalize to other cultures. This issue could be
addressed by following a similar design in future examinations of design metaphors across different
cultural contexts.
There are several limitations associated with recruiting though Amazon Mechanical Turk. Al-

though we took several precautions to ensure high data quality, it is difficult to ensure realistic
responses to questions that require study participant effort to answer. Some participants may aim
to answer questions as quickly as possible and consequently may only superficially address more
introspective questions. Online surveys also do not allow users to interact with the robots in person.
We cannot, therefore, infer how user expectation may be altered through real-world interactions
and over time. These findings are best viewed as priors on robot expectation before interaction
occurs.

In-the-wild robot deployments will best address concerns about the task, context, and population
of the MUFaSAA dataset. They may also utilize different robot representation methods (especially
augmented and virtual reality) to validate expectations of embodiments in the dataset. Deployments
in locations such as museums, cafes, and school campuses solidify social and functional expectations
that allow users to make better judgements of robot performance. Finally, interaction in physically
co-located contexts facilitate the verification of personhood and elicit more genuine responses to
robot behavior.

This work utilizes the ontology of anthropomorphic, zoomorphic, and mechanical metaphors as
a means of analysis. While that was a useful classification for our analysis, as the space of robot
design expands and other metaphors are used in design processes, that ontology can be restructured
to overcome its limitations (for example to capture robots that look like plants). Importantly, the
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utility of design metaphors as a tool for understanding user expectations does not directly depend
on this ontology, allowing for the evolution of classification systems.

9 CONCLUSION
This work provides a framework for understanding and informing robot design to set realistic
expectations through the use of design metaphors. We contributed a methodology for determining
the design metaphors and collecting social and functional expectations of a given robot embodiment.
We set up the MUFaSAA dataset of 165 socially interactive robot embodiments, and collected a
rich dataset of participant responses about social, functional, and other relevant expectations for
of those embodiments. We also developed an open-source visualization of the dataset and study
findings toward broadly facilitating HRI research and human-centered robot and interaction design.
The analysis results offer general guidelines for designing socially interactive robots for different
contexts and ways in which user expectation of functional and social capabilities are impacted by
robot embodiments. They also point to new and fruitful research directions in the context of robot
embodiment.

10 STATEMENTS
10.1 Ethical Impact Statement
The collection of the MUFaSAA dataset was approved by the IRB at the University of Southern
California under the protocol UP-18-00510. We discussed ethical implications of administering
this survey in Section 3.3. We note that the participants are recruited from all areas of the US
though MTurk. This results in a dataset that is skewed toward young white college-educated
Americans and the metaphors used to describe robots may not be reflective of metaphors used by
other cultures. We provide full demographic information in Appendix A.1, which can be used to
assess the similarity of this dataset to the target audience in design contexts. Additionally, because
we collected free-response answers, there may responses that are not factually correct if users have
incorrectly remembered certain references. Thus this dataset should not be viewed as an objective
truth, but rather how perceptions of robots are established naturalistically.

By introducing the MUFaSAA dataset, we hope to assist in the design process of socially interac-
tive robots by providing insights into how users expect these robots to act. While this is useful to
reduce the number of iterations in design cycles, this also has the potential to design robots that
reflect potentially negative stereotypes. Thus we urge designers to consider how the robot’s design
and the contexts that robots are deployed in may be affecting harmful stereotypes in society at
large.

10.2 Citation Diversity Statement
Many fields have seen gender-based biases in citations of other works [14, 26, 28, 67]. In an effort to
make the citation practices of our work transparent, we present the gender proportions of our works
cited. We report the genders of the first and last authors as determined by names, images, and public
research websites. While this practice may under-report identities that are not directly disclosed
through these modalities, it offers some insight into the makeup of our works cited at the time of
writing this manuscript. Excluding self-citations, our manuscript citations are comprised of 23.2%
woman/woman papers, 22.2% woman/man papers, 21.3% man/woman papers, and 33.3% man/man
papers. We look forward to future work that can better support equitable citation practices in
science.
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A SURVEY INFORMATION
A.1 Demographic Information

Fig. 12. The intersection of participant identities from the design metaphor survey (Study 1).

Fig. 13. The intersection of participant identities from the social expectation survey (Study 2).
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Fig. 14. The intersection of participant identities from the functional expectation survey (Study 3).
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A.2 Design Metaphor SurveyQuestions and Interface

Fig. 15. The interface and questions participants in the design metaphor survey saw (Study 1).
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A.3 Social Expectation SurveyQuestions and Interface

Fig. 16. The interface and questions participants in the social expectation survey saw (Study 2). The order of
the questions in the Likert section were randomized both during pilot studies and during the full deployment.

Table 3. This table describes the assignment of the Likert items to the specific social constructs they measured.

Construct Items
Warmth "Social", "Organic", "Compassionate", and "Emotional"
Competence "Capable", "Responsive", "Interactive", and "Competent"
Discomfort "Scary", "Strange", "Awkward", and "Aggressive"
Femininity "Feminine"
Masculinity "Masculine"
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A.4 Functional Expectation SurveyQuestions and Interface

Fig. 17. The interface and questions participants in the functional expectation survey saw (Study 3).

Table 4. This table describes the assignment of the Likert items to the specific functional constructs they
measured. The order of the questions in the Likert section were randomized both during pilot studies and
during the full deployment.

Construct Items
Perception and Interpreta-
tion

"...is able to react to the same environmental stimuli as I do", "...is
able to recognize emotions", "...is able to perceive what I perceive",
and "...is able to understand my behavior"

Tactile Mobility and Interac-
tion

"...is able to autonomously navigate in space", "...is able to move
towardme", "...is able to touch objects", and "...is able to carry objects"

Continued on next page
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Table 4 – Continued from previous page
Construct Items

Non-verbal Communication "...is unrestricted in its actions", "...is unrestricted in its movements",
"...is unrestricted in its facial expression", and "...is unrestricted in
its gestures"

B ROBOT DESCRIPTORS

Table 5. A table of the binary and ordinal robot descriptors that were developed through inspection of the
robot designs, and user descriptions. For each feature, we provide a description of what the feature means,
and the measure of Cronbach’s alpha that we obtained between two raters of the robotic systems.

Robot Feature Description Cronbach’s 𝛼
Anthropomorphic
Embodiment?

Presence of human-like features (e.g., is bipedal, has two
arms, two legs, or hair on the head).

.87

Zoomorphic Embodi-
ment?

Presence of animal-like features (e.g., a tail, wings, animal-
like ears)

1.00

Mechanical Embodi-
ment?

Presence of visible mechanical parts (e.g., exposed wires,
wheels, or visible motors).

.89

Dominant Classifac-
tion

One of {Anthropomorphic, Zoomorphic, Mechanical},
which describes the overall form of embodiment.

.83

Number of Wheels The assumed number of wheels that the embodiment
uses to move.

.70

Number of Legs The number of appendages that can be used for locomo-
tion.

.88

Number of Arms The number of assumed appendages that could be used
for gesturing and grasping.

.95

Number of Eyes The number of round components that can be perceived
as eyes.

1.00

Mobile? Can physically move between points in space. .89
Does it ride on some-
thing?

Presence of a platform that the robot appears to rest on
top of.

.86

Drivetrain Skirt? Indicates that the wheels and motors were contained
within a skirt-like shape that smoothly connects with the
rest of the embodiment.

.79

Treads? Presence of treads as a means of locomotion. 1.00
Spherical Head? Presence of a head that appears to be a near-perfect

sphere.
.92

Box Head? Indicates that the head is approximately box-shaped (but
not just a standalone screen).

.87

Tablet Head? Indicates that the head consists of a single screen (e.g., a
phone, tablet, etc.)

1.00

Human Head? Indicates that the head is human-like in appearance and
has a skin-like quality.

1.00

Continued on next page
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Table 5 – Continued from previous page
Robot Feature Description Cronbach’s 𝛼

Wearing a Helmet? Indicates that the robot appears to be wearing a helmet
or face shield.

.61

Antennae? Presence of one or more antenna-like structures on the
head

1.00

Hair Follicles? Presence of many separate hair-like protrusions from the
head in a distinct region that represents hair.

.87

Mechanical Hair? Presence of mechanical structure on the head that can be
interpreted as a hair style.

1.00

Ears? Presence of shapes or mechanisms that resemble ears. .81
Screen Face? Presence of a screen near the top of the robot that displays

at least one facial feature.
.94

Static Face? Presence of physical facial features that are not physically
actuated.

.78

Mechanical Face? Presence of a physical facial features that contains com-
ponents that are physically actuated.

.77

Mouth? Presence of a shape or mechanism that resembles a
mouth.

.89

Nose? Presence of a shape or mechanism that resembles a nose. .83
Eyebrows? Presence of shapes or mechanisms that resemble eye-

brows.
1.00

Blush? Presence of a shape, mechanism, or coloring that resem-
bles rosy cheeks.

.72

Eyelids? Presence of a shape or mechanism that resembles eyelids .72
Pupils? Presence of a shape within a round shape perceived as

eyes that represents a pupil.
.92

Irises? Presence of a (colorful) shape within a round shape per-
ceived as eyes that represents an iris, which contains a
pupil.

.78

Eyelashes? Presence of hair-like protrusions from the eye that repre-
sent eyelashes.

.89

Lips? Presence of shapes or mechanisms that resemble lips. .82
Mechanical Lips? Presence of physical tube-like structures that represent

lips.
1.00

LowWaist-to-Hip Ra-
tio?

Indicates that the perceived waist width of the robot is
much smaller than (< 0.8 times) the perceived hip width.

.80

High Shoulder-to-
Waist Ratio?

Indicates that the perceived shoulder width is much larger
than (> 1.25 times) the perceived waist width.

.93

High Shoulder-Hip
Ratio?

Indicates that the perceived shoulder width is much larger
than (> 1.25 times) the perceived hip width.

.62

Screen On Chest? Presence of a display interface at a medium height on the
embodiment.

1.00

Furry? Indicates that the robot’s embodiment is covered in mul-
tiple hair-like protrusions.

1.00

Matte Body? Indicates that the external sheen of the embodiment is
not highly reflective.

.94

Continued on next page
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Table 5 – Continued from previous page
Robot Feature Description Cronbach’s 𝛼

Hard Exterior? Indicates that the robot’s exterior is constructed from
hard materials (e.g., plastic, metal, etc.).

1.00

Skin-like Material? Indicates the presence of a skin-like, flexible, and non-
furry material covering any part of the embodiment.

1.00

Exposed Wires? Presence of visible string-like structures that are needed
for power requirements of the embodiment.

.80

Jointed Limbs? Indicates that the limbs of the robot contain visible joints
(i.e., not hidden under fabrics or outer casings).

.79

Industry? Indicates that the robot was released for purchase by end-
users.

.95

Curvy Embodiment? Indicates that the embodiment is designed with organic-
looking curves and the embodiment is not obviously par-
titioned into simple shapes (e.g., rectangular prisms or
cylinders).

.73

Symmetric Embodi-
ment?

Indicates that the embodiment exhibits reflective symme-
try across its sagittal plane.

.79

Table 6. A table of the continuous feature descriptors taken from the robots’ websites.

Robot Feature Description
Height The total height of the robot in centimeters.
Weight The total mass of the robot in kilograms, or "UNK" if this information

was not available.
Year The year in which the robot was created or first written about

publicly.
Country of Origin The country in which the robot was developed
Most Prominent Color The color that is used in most of the embodiment.
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