
APPENDIX

ADDITIONAL DEMOGRAPHIC AND STUDY INFORMATION

We report the additional demographic information that we
collected from the customization session and the evaluation
study.

A. Robot Customization Session

Demographics. Participants were recruited from the local
university student population through email, flyers, and word-
of-mouth. A total of 25 participants were part of the study,
with ages ranging from 19 to 43 (median 25); participants
self-declared as men (13), women (10), and genderqueer,
nonbinary, or declined to state (3, aggregated for privacy;
some participants belonged to multiple groups). We recruited
13 participants who self-identified as LGBTQ+. Participants
were Asian (13), Black (2), Latino (5), and White (6); some
participants belonged to multiple groups. All participants were
able to create signals they liked for all four categories, and all
successfully interacted with the robot to collect all the items
in the word search task.

Additional Procedure Information. The study took place
in a conference room with a kitchen to reflect a realistic living
environment. Participants entering the study were brought to
a table in the middle of the room, with a clear view of a Kuri
robot that was modified to have a screen and backpack.

First, the experimenter provided a ten-minute explanation of
the study. In this explanation, participants were first introduced
to the item-finding task, and were described each of the four
signals in detail. The experimenter introduced the participant
to the RoSiD interface and described how to use each part of
the interface. Once the introduction concluded, participants
were instructed to design each of the four signals in a
randomized and counterbalanced order.

For each of the signals, participants were allowed to design
any signal that they liked. There was no time limit, participants
were able to continue customizing until they reached a final-
ized signal. Once they finished designing, they were instructed
to tell the experimenter to move to the next signal. When all
four signals were designed, the participant used the robot in
it’s intended use case of finding items.

The item-finding task aimed to simulate using the robot to
find items while being distracted by other tasks. We achieved
this by having the users engage in a word search. There were
ten total words to find, but only seven of these words were
listed on the actual word search. To find the final three words,
users had to interact with the robot to find items around the
room. When the robot returned these items to the user, the
item had the word to find in the word search printed on a
label attached to the item. The three items were: a stapler, a
salt shaker, and a doorstop. The salt-shaker and doorstop were
items that Kuri used the has-item signal for, because they were
small enough to fit in the backpack on Kuri. The stapler was
too big to fit in Kuri’s backpack, and thus Kuri used the has-
info signal to have the user stand up and walk over to the
Kuri robot to pick up the item. The stapler was placed on a

counter behind the participant, out of view from the table that
the participant was facing.

Following the interaction, participants filled out the system
usability scale. The experimenter then performed a semi-
structured interview with the participant to understand their
opinions on the design process. Participants then completed
the study, and were compensated with an Amazon Gift Card
sent to their email.

B. Preference Evaluation Study
Participants were recruited from the local university student

population through email, flyers, and word-of-mouth. A total
of 42 participants were part of the study, with ages that ranged
from 18 to 32 (median 24); participants self-declared as men
(19), women (19), and genderqueer, nonbinary, or declined to
state (4, aggregated for privacy; some participants belonged
to multiple groups). There were 17 participants that self-
identified as LGBTQ+. Participants were Asian (24), Black
(1), Latino (7), Middle Eastern (3), and White (11) (some
participants belonged to multiple groups). Participants rated
their median familiarity with robotics as a 3 out of 9; a score
of 1 corresponded with the term “novice” and a score of 9
corresponded with the term “expert”.

ADDITIONAL TRAINING DETAILS

To encourage reproducibility, we provide the specifics of
our training experiments.

C. Training Feature Learning Models
We used the following encoder architectures for each modal-

ity. We used the transposed architecture for all self-supervised
methods that required a decoder.

• Visual: the visual modality used a convolutional
architecture that consisted of kernels with sizes:
(16, 16), (8, 8), (4, 4) followed by a three-layer MLP with
hidden size 256. Each convolutional layer was followed
by a batch norm and a leaky relu activation. Each MLP
layer except the last was followed by a relu activation

• Auditory: the auditory modality used a convolu-
tional architecture that consisted of kernels with sizes
(16, 16), (8, 8), (4, 4) followed by a three-layer MLP with
hidden size 256. Each convolutional layer was followed
by a batch norm and a leaky relu activation. Each MLP
layer except the last was followed by a relu activation

• Kinetic: the kinetic modality used a recurrent architecture
consisting of a bidirectional 2-layer GRU with a size 64
dimension hidden state.

We provide the pseudocode to train a network with the
CLEA objective in Alg. 1. For all feature learning models
we used the Adam optimizer with default learning rates. All
feature learning models also used a batch size of 128. We
trained a separate feature learning model for each signal that
users designed for.

We selected hyperparameters for the networks using the
query data collected in the robot customization study (Sec. IV)
as a validation set. All our methods had three possible terms in



Algorithm 1: Contrastive Learning From Exploratory
Actions

1 Given a list of robot trajectory datasets that all users
saw over the course of the signal design process
separated into explored and ignored data,
D = {(Dex.

i
,Dig.

i
)N
i=0}, a learnable model that

generates trajectory features, !, and a hyperparameter
for the contrastive margin, ω;

2 Initialize ! to a random state (or to a pretrained
network);

3 while not converged do
4 (Dex.,Dig.) → sample item from D;

// Sample anchor and positive from
explored data

5 if Uniform(0, 1) < 0.5 then
6 εA ↑ Dex., εP ↑ Dex., εN ↑ Dig.;
7 end

// Sample anchor and positive from
ignored data

8 else
9 εA ↑ Dig., εP ↑ Dig., εN ↑ Dex.;

10 end
11 L1 = max(||!(εA)↓ !(εP )||22 ↓ ||!(εA)↓

!(εN )||22 + ω, 0);
12 L2 = max(||!(εP )↓ !(εA)||22 ↓ ||!(εP )↓

!(εN )||22 + ω, 0);
13 update parameters of ! to minimize L1 + L2

14 end

our loss function: the contrastive loss that we formulated, a re-
construction loss, or a KL-divergence loss comparing the batch
distribution to a unit multivariate normal distribution. Only the
contrastive loss and the KL-Divergence loss had tunable pa-
rameters. To select the margin for the contrastive loss, we per-
formed a parameter sweep over ω ↔ [.01, .1, .5, .9, 2, 5, 10.].
We selected ω = .1 for the visual modality, ω = .1 for the
auditory modality, and ω = 2 for the kinetic modality. To
select the regularization term for the VAE, we performed a
parameter sweep over ϑ ↔ [.01, .1, .5, .9, 2, 5, 10.]. We selected
ϑ = 1 for the visual modality, ϑ = 10 for the auditory
modality, and ϑ = 10 for the kinetic modality.

D. Reward Training

We learned two forms of reward functions to evaluate
CLEA. The first was a reward network that we evaluated
with predicted choice accuracy, similar to Bobu et al. [4].
The second form of reward was a linear transformation of
the features as in Bıyık et al. [8].

Neural Network Reward. We used the same reward net-
work for all modalities. The network takes as input a d-
dimensional vector. The network itself consists of two fully
connected layers, each with 256 hidden units. Each layer is
followed by a ReLU nonlinearity. We trained the network
using cross entropy loss (Eq. 6).

We additionally encouraged the learned reward to not be too
large by placing a L2-norm regularization on the predicted
rewards, with a weight of .01 for all reward networks. We
trained all reward networks for 60 epochs using the default
settings for the Adam optimizer and a batch size of 16.

Linear Reward. The linear reward models as user’s reward
function as RH(ε) = ϖ · !(ε), where the user’s specific
preference is represented by ϖ. We learned a user’s ϖ through
pairwise choices. We adopted the Bradley-Terry preference
model to model the probability of a user choosing εk from
a query Q = {ε0, ε1, ...εN}:

P (εk|Q,ϖ) =
eω·!(εk)

∑
N

i=0 e
ω·!(εi)

(7)

To learn ϖ, we apply Bayes’ rule.

P (ϖ|Q, εk) ↗ P (εk|Q,ϖ) · P (ϖ) (8)

We assume a prior ϖ of a uniformly distributed unit ball,
as in prior works [9]. We update our posterior after every
observed choice to estimate the user’s ϖ.

EXTENDED STATISTICAL ANALYSIS

We report the full statistical analysis that we performed
across algorithms to report effect sizes so that others may use
these for power analyses.

E. Completeness
We used a repeated measures ANOVA to evaluate com-

pleteness for each modality, using accuracy as the dependent
measure and algorithm as the within-subjects factor. All as-
sumptions were met. The choice of algorithm is significant
for all modalities (visual: p < .001, ϱ2 = .582; auditory:
p < .001, ϱ2 = .532; kinetic: p = .008, ϱ2 = .247).
We performed post-hoc analysis using paired t-tests with a
Bonferroni correction. Our analysis revealed that CLEA and
CLEA+AE outperformed all other algorithms in the visual
modality (all pcorr. < .05) and CLEA+AE outperformed all
algorithms in the auditory modality (all pcorr. < .05). There
were no significant differences between algorithms in the
kinetic modality; Random, CLEA, and CLEA+AE empirically
performed the highest.

F. Simplicity
We performed a two-way repeated measures ANOVA with

dimension and algorithm as within-subjects factors and AUC
as the dependent measure. The feature space dimension and
the feature learning algorithm were the within-subjects fac-
tor. We found that the choice of algorithm was significant
for all modalities (visual: p < .001, ϱ2 = .909; auditory:
p < .001, ϱ2 = .502; kinetic: p < .001, ϱ2

p
= .530). We

used pairwise t-tests with Bonferroni corrections to assess
all pairwise comparisons between the algorithms for learning
features.

For the visual modality, we found that CLEA+AE features
were the best on average, significantly outperforming all other



Fig. 8. Qualitative results. The leftmost image shows a reference image that users actually selected when designing signals for the robot. The other images
show the next most similar image in the embedding space for each method. CLEA-based methods show more semantic similarity to the reference image than
self-supervised approaches.

features across feature space dimensions (all pcorr. < .001).
For the auditory modality, CLEA+VAE features were the
best on average, significantly outperformed all algorithms
across feature space dimensions (all pcorr. < .001). For the
kinetic modality, CLEA features outperformed all algorithms
across feature space dimensions except AE features (all other
p < .001), however we note that CLEA has much higher
performance than AE for lower-dimensional feature spaces.

G. Minimality
We performed a repeated measures ANOVA using AUC

as a dependent measure and the algorithm as the within-
subjects factor and determined that the choice of algorithm
was significant (visual: p < .001, ϱ2 = .776; auditory:
p < .001, ϱ2

p
= .685; kinetic: p < .001, ϱ2

p
= .658) we used

paired t-tests with bonferroni correction to assess all pairwise
comparisons. In the visual modality, CLEA+AE significantly
outperformed all other algorithms (all pcorr. < .001). In the
auditory modality, CLEA+VAE significantly outperformed all
other algorithms (all pcorr. < .001). In the kinetic modality
CLEA outperformed all other algorithms (all pcorr. < .003).

H. Explainability
We evaluated significance using a binomial test with con-

tinuity corrections [91] to determine if users selected CLEA-
generated signals as their favorite signal significantly more
often than random chance Participants selected the behaviors
generated using CLEA features 16 times—significantly more
often than chance, p < .001. All other algorithms showed no
significant differences from random chance.

ADDITIONAL EXPERIMENTS

We performed three additional experiments to evaluate
CLEA. First, we qualitatively examined the structure of the
feature space; second, we examined each method’s robustness
to injected noise; and third, we examined directly learning
the user’s reward from from the raw robot behaviors without
learning a feature space.

I. Qualitative Results

To illustrate the types of embeddings CLEA learns com-
pared to the self-supervised approaches, we present examples
from the visual modality in Fig. 8. We selected the most
similar image based on the cosine similarity of the embed-
dings. We show that the embeddings learned by CLEA show
more semantic similarity qualitatively than self-supervised
models. These images were selected using the 8-dimensional
embeddings for all models.

For the idle behavior, self-supervised approaches show sim-
ilar structural composition to the image of a robot, but CLEA
methods show other robots or show similar flashing motifs.
For the searching behavior, self-supervised approaches show
similar square compositions to the reference image, but CLEA
methods maintain map-like images. For the has information
signal, the autoencoder recovered a similar lightbulb, whereas
CLEA embeddings show other information-related items like
books, or a pin identifying where an object is. For the has item
signal, self-supervised approaches are unrelated to the idea of
possessing an item, whereas CLEA methods show containers.



Fig. 9. Robustness results. Accuracy of a linear reward model across different levels of injected noise. Features using CLEA maintain higher performance
across different noise levels. We find that CLEA+AE is the least sensitive to noise overall.

J. Robustness to Noise

To evaluate robustness to noise, we again adopted a simple
linear model, RH(ε) = ϖ · !(ε). We estimated ϖ using
bayesian inverse reward learning as in previous works [8, 9,
11]. When learning from the observed user queries, we add
noise from a uniform Gaussian to simulate inaccuracies in
features for new robot behaviors.

!(ε)→ = !(ε) + ς · N (0, 1) (9)

where ς represents a scaling factor of the noise. We eval-
uated final alignment after 100 queries using these modified
features to assess robustness to noise. We used 8-dimensional
features, modified the noise parameter with the values ς ↔
[0, 0.01, 0.05, 0.1, 0.2, 0.3], and averaged over 60 trials for
each participants to control for random effects. The results
are illustrated in Fig. 9.

In the visual modality, we found that CLEA+AE was
the most performant across all noise levels. In the auditory
modality, CLEA+AE was the least sensitive to noise, but
CLEA+VAE was more robust to noise level than a normal
VAE, indicating that CLEA increases robustness. In the kinetic
modality, CLEA was the most performant across noise levels.

K. Robustness to Sample Weighting

Participants engaging in exploratory search may make more
meaningful exploratory actions as they get closer to their
end-signal. To evaluate if this is important in the learning
process, we performed an additional experiment that weights
exploratory actions at the end of the signal design process as
more important than exploratory actions taken at the beginning
of the signal design process. To weight the samples, we used
the following equation based on the index i of the sample
ordered by time, and the total number of samples, N :

w(i) =
i

N
(10)

We trained each of the CLEA algorithms again, multiplying
the loss for each datapoint by this additional weight value. We
compared the weighted models, CLEA (weighted), CLEA+AE
(weighted), CLEA+VAE (weighted), with the unweighted
models, CLEA, CLEA+AE, CLEA+VAE, for each of the four
criteria: completeness, minimality, simplicity, and recoverabil-
ity. We used the same evaluation processes as described in
Sec. V-D.

TABLE II
COMPARISON OF COMPLETENESS, MEASURED WITH TEST PREFERENCE

ACCURACY (TPA), FOR UNWEIGHTED AND WEIGHTED TRAINING. THERE
WERE NO SIGNIFICANT DIFFERENCES IN TPA FOR ANY MODALITY OR

METHOD (ALL P-VALUES > .05).

TPA TPA p-value
(unweighted) (weighted) (unc.)

CLEA .955 .949 .553
Visual CLEA+AE .974 .973 .911

CLEA+VAE .810 .841 .383

CLEA .887 .933 .063
Auditory CLEA+AE .949 .935 .295

CLEA+VAE .800 .767 .429

CLEA .976 .973 .789
Kinetic CLEA+AE .979 .973 .525

CLEA+VAE .936 .934 .904

Completeness. To evaluate the effect of completeness, we
used pairwise t-tests to assess differences in TPA between the
weighted and unweighted models. The results are shown in
Table II. We observe no significant differences between any
method or modality, indicating that there is no effect on feature
completeness when reweighting samples.

Minimality and Simplicity. To evaluate the effect of
minimality and simplicity, we present the results of AUC
Alignment after 100 simulated pairwise queries. All values
are significant because we can re-run simulations as many
times as necessary, so we evaluate differences between the two
algorithms by counting how many times the weighted version



TABLE III
COMPARISON OF AUC ALIGNMENT ACROSS UNWEIGHTED AND WEIGHTED VARIANTS OF THE CLEA ALGORITHMS. NUMBERS THAT PERFORM BETTER

ARE IN BOLD. WE FIND THAT THERE WERE 22 OF 45 TRIALS WHERE THE UNWEIGHTED CLEA PERFORMED THE BEST, AND 23 OF 45 TRIALS WHERE
THE WEIGHTED CLEA PERFORMED THE BEST. THESE VALUES DO NOT SIGNIFICANTLY DIFFER FROM RANDOM CHANCE (p > .05).

AUC Alignment AUC Alignment AUC Alignment AUC Alignment AUC Alignment AUC Alignment AUC Alignment AUC Alignment AUC Alignment AUC Alignment
(unweighted) (weighted) (unweighted) (weighted) (unweighted) (weighted) (unweighted) (weighted) (unweighted) (weighted)

Dimension 8 16 32 64 128

CLEA -.011 .011 .288 .386 .304 .239 .187 .116 .118 .054
Visual CLEA+AE .440 .506 .411 .459 .380 .418 .298 .333 .390 .341

CLEA+VAE .257 .449 .300 .422 .379 .433 .317 .222 .156 .231

CLEA .075 .119 -.078 .177 .166 .063 .155 -.027 .101 -.071
Auditory CLEA+AE .337 .373 .005 .225 .189 .275 .018 .087 .229 .253

CLEA+VAE .524 .279 .347 .273 .303 .156 .206 .196 .176 .141

CLEA .289 .265 .329 .350 .295 .310 .416 .403 .405 .335
Kinetic CLEA+AE .092 .266 .209 .288 .309 .272 .396 .351 .335 .320

CLEA+VAE .000 .117 .265 .178 .161 .244 .400 .379 .423 .276

outperforms the weighted version for each trial. We use a
binomial test to determine if the count of trial wins is signifi-
cantly different from random chance, i.e., 50%. For simplicity,
we examined AUC Alignment across all dimensions, and
found that unweighted CLEA models outperform weighted
CLEA models in 22 of 45 trials, which is not significantly
different than random chance (p = .500). For minimality, we
examine just the smallest feature space dimension. We find
that unweighted CLEA outperforms weighted CLEA in 2 of 9
trials, which is not significantly different than random chance
(p = .0912).

TABLE IV
EXPLAINABILITY

Similarity Similarity p-value
(unweighted) (weighted) (unc.)

CLEA .239 .225 .003*
Visual CLEA+AE .169 .140 .001*

CLEA+VAE .136 .141 .486

CLEA .248 .286 .001*
Auditory CLEA+AE .250 .253 .835

CLEA+VAE .193 .259 .001*

CLEA .203 .204 .896
Kinetic CLEA+AE .198 .202 .213

CLEA+VAE .307 .281 .188

Explainability. To evaluate the effect of weighted training
on explainability, we calculated the cosine similarity of the
top-ranked signals from the ranking study (Sec. V-B) to their
nearest exemplar from the customization session (Sec. IV) for
both the weighted and unweighted CLEA variants. We present
the results in Table IV. We found that there were only four
significant differences across the three modalities. In two of the
four differences, the unweighted version of CLEA showed a
higher similarity, but this does not differ from random chance
according to a binomial test (p = .500). Notably, the two
instances where the unweighted CLEA training performed best
were both in the Visual modality, and the two instances where
weighted CLEA training performed best were in the Auditory
modality. While we cannot draw any strong conclusions, these
results may indicate that users explore different modalities in
different ways. Future research may investigate reweighting

Fig. 10. Direct reward modeling results. We show the recoverability across
the different methods of learning rewards, including directly learning rewards.
We find that CLEA+AE outperforms all self-supervised methods and direct
reward modeling.

strategies that capture these differences.
Summary. Across the four evaluation criteria, we found

that there was no clear benefit for using unweighted or
weighted sampling techniques. This highlights that CLEA
works well without additional engineered training techniques.
This underscores the simplicity of this algorithm to leverage
information from users’ exploratory behaviors without having
to explicitly model the user’s search process.

L. Comparison with Learning Rewards without Features

To validate that learning features is useful, we tested learn-
ing a user’s reward function from raw inputs. While this is not
scalable as each user is required to first perform ten ranking
tasks, this approach is highly expressive because it uses a large
network that take the raw data structures as input. We used
the same approach as in Sec. D. The only change we made
was to update the feature’s model’s weights during training.
We started with a feature learning network with randomly
initialized weights, compared to the rest of our evaluations,
where the weights of the feature network were frozen. We call
this method “Direct Reward Learning” and show the results
in Fig. 10

Direct reward modeling showed improvement over self-
supervised approaches, except for the kinetic modality. This
modality is highly prone to over-fitting, and with the small



individual preference datasets, direct reward modeling is not
able to learn a generalizable reward function for the user. In
the visual modality, CLEA+AE achieved a mean accuracy
of .973, compared to .938 for Direct Reward Modeling. In
the Auditory modality, CLEA+AE achieved .940 compared
to .902 for Direct Reward Modeling. In the Kinetic modality,
CLEA+AE achieved .971 compared to .569 for Direct Reward
Modeling. This result underscores the utility of using human-
generated data to learn features to both facilitate downstream
preference learning and more easily scale to large numbers of
users.
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