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Abstract—People have a variety of preferences for how robots
behave. In order to understand and reason about these prefer-
ences, robots aim to learn a reward function that describes how
aligned their behaviors are with a user’s preferences. Good repre-
sentations of a robot’s behavior can significantly reduce the time a
user needs to spend teaching the robot their preferences, making
the robot easier to use and facilitating adoption. Specifying these
representations—what “features” of the robot’s behavior matter
to users—remains a difficult problem; Features learned from raw
data lack semantic meaning and features learned from user data
require users to engage in tedious labeling processes. Our key
insight is that users tasked with customizing a robot automatically
engage in exploratory search; they explore behaviors that they
find interesting and ignore behaviors that are irrelevant. We
describe these exploration behaviors as exploratory actions and
identify them as a novel data source that can be leveraged to
facilitate the feature learning process for robots. We propose
constrastive learning from exploratory actions (CLEA) by defining
a loss function that learns features from such exploratory actions.
We collected exploratory actions from users performing an open-
ended signal design activity with a Kuri robot, and evaluated
CLEA features through a second user study with a different set
of users. CLEA features outperformed self-supervised features
when learning user preferences in four ways; CLEA features
were more complete, simple, minimal, and explainable.

Index Terms—Preference Learning, Signal Design, Multimodal
Learning

I. INTRODUCTION

People have a variety of preferences for how robots should
behave based on many contextual factors, but those contextual
factors are often unknown to the designers of robotic systems
before a robot is deployed. Consider a wheeled robot that helps
users find misplaced items in their home. One user may be
a long-time dog owner and thus interpret this interaction as
similar to playing fetch. That user might expect the behavioral
aspects of the robot to be dog-like. For example, the robot may
move erratically as if following a scent, bark when it has found
an item, and emote to portray happiness having completed its
command. Another user, in contrast, may be more familiar
with smart devices and expect the interaction to be purely
functional. That user might instead expect the robot to move
and scan the room methodically, chime when it finds an item,
and immediately return the item to the requester.

Deploying a robot that behaves in only one way cannot
satisfy both of these users. Thus, users must be able to
customize robot behaviors to align with their preferences.

Fig. 1. Example exploratory search process. Users engaging in exploratory
search test out different robot behaviors to learn what the robot is capable of
and what they prefer the robot to do.

Several works view the problem of aligning the robot with
the user’s preferences as modeling a user’s internal reward
function, which can be addressed with inverse reinforcement
learning [1, 2]. In this context, the reward function takes in
numerical “features” of the robot’s behavior, e.g., a score of
how dog-like or machine-like the behavior is, and output a
single value that corresponds to how good that behavior is
for the user. How these features are defined heavily influences
how effectively a robot can adapt to a specific user. Features
can be learned directly from the robot behaviors through self-
supervised techniques like autoencoders (AEs) and variational
autoencoders (VAEs). While these methods result in features
that are physically representative of the robot’s behaviors, they
may not align with the features people actually care about.
The most effective way to learn user-aligned features is by
leveraging user-generated data [3]. However, collecting such
data typically requires a user to engage in a data-labelling
process known as a proxy task before the user can engage in
the actual task of customizing the robot [4–6].

Our goal in this work is to learn features for robot behaviors
that are aligned with user preferences, but do not require
users to engage in unrelated proxy tasks. To accomplish this,
we identify a new form of user-collected data that is gen-
erated during the robot customization process. We collected
this data by recruiting users to customize behaviors for a
Mayfield Kuri robot that helped them locate items around a
room. Participants used the RoSiD interface to design state-
expressive signals [7], which allowed them to search through



Fig. 2. CLEA: Contrastive Learning from Exploratory Actions. Users engage in exploratory search to select their preferred robot behaviors. We
automatically generate data from their exploratory actions to learn features that facilitate future interactive learning processes. Our contributions are highlighted
in pink, and the enabling work that CLEA supports in highlighted in green.

thousands of example robot behaviors. Participants automati-
cally performed exploratory actions by selecting behaviors that
appeared appealing to them while ignoring those they thought
were irrelevant, as illustrated in Fig. 1.

Our key insight is that we can use these user exploratory
actions to learn features for robot behaviors that are both
aligned with the features that users care about and do not
require users to complete proxy tasks before customizing
the robot. We view users performing exploratory actions as
engaging in an intuitive reasoning process, and model this
using a contrastive loss to train feature-generating networks.
We call this framework contrastive learning from exploratory
actions (CLEA) and provide an overview in Fig. 2.

We show that CLEA learns features that are more effective
for eliciting a user’s preferences than the state-of-the-art self-
supervised learning techniques, offering a scalable and user-
friendly approach to personalizing robot behaviors. In Sec. IV,
we collected a training set of exploratory actions from 25
participants specifying their signaling preferences to learn
CLEA features. In Sec. V, We evaluated the generalizability of
those features with a testing set from 42 naı̈ve participants. We
found that CLEA features outperformed self-supervised fea-
tures for robot signaling along four criteria [3]: they contained
information relevant to elicit user preferences, required fewer
user interactions to elicit preferences, captured information in
fewer dimensions, and demonstrated properties that indicate
compatibility with explanatory methods.

II. RELATED WORK

Eliciting User Preferences through Interaction. Users must
be able to communicate their preferences to the robot so
the robot can learn these preferences. Previous works in
preference learning identified several interactions that allow
users to specify their preferences for robot behaviors, including
behavior comparisons [8–10], behavior rankings [11–13], bi-
nary rewards [14], corrections [15–18], natural language [19–

22], facial expression [23, 24], and demonstrations [25–29].
Those interactions require different skills and provide varying
levels of information on the user’s true preferences [30–32].
Additionally, all of them assume that there is a numerical
representation of robot behavior that encapsulates the features
that users care about. Thus, having meaningful numerical
features is necessary to allow users of different skill levels
to teach robots in a variety of ways.
Learning Representations for Eliciting Preferences. There
are three popular approaches for representing features of
robot behaviors: hand-crafted features, features learned from
modeling robot behaviors, and features learned from user
interactions. Hand-crafted features are based on an engineer’s
intuitions of what is meaningful for users [1, 15, 33, 34]. Such
features can speed up the preference learning process because
they are meaningful to users, but they can also be difficult to
design and can lead to incomplete feature spaces that limit the
range of preferences that can be captured [3].

In contrast, features learned from modeling the robot’s
behaviors require less engineering effort, but are still incom-
plete. Such techniques learn features with little human input
through self-supervised learning [35–37] or weakly-supervised
learning [38–40]. While these algorithms result in features that
describe the underlying behaviors well and do not require
extensive data collection from users, the resulting feature
spaces are not semantically meaningful to users [4].

Learning feature spaces from human input can result in
more complete feature spaces of robot behaviors. A user may
manually select features [41, 42], physically move compliant
robots to demonstrate behaviors [43], provide demonstrations
for use in multi-task learning [44, 45] and meta-learning
frameworks [46, 47], or answer trajectory similarity queries
[4]. These methods focus on developing proxy tasks to learn
features that are aligned with user preferences [3], however
these tasks require conscious effort from the user.



We emphasize that such proxy tasks are not necessarily
aligned with the users’ goal of customizing a robot’s behaviors,
and thus users may be unmotivated to perform the tasks [48,
49]. In contrast, exploratory search provides an interaction
that allows the user to achieve their primary goal of robot
behavior customization. This work identifies that exploratory
search additionally generates data that can be used to learn
robot feature spaces in place of proxy-task data.
Exploratory Search. Work in human-computer interaction
(HCI) distinguishes two interactions with databases: infor-
mation retrieval and exploratory search [50]. Information
retrieval [51, 52] refers to an interaction with a data system
wherein the user knows exactly what they need to find—the
user’s reward is known. In exploratory search, the exact goal
is unknown ahead of time because the user is unfamiliar with
the search topic and how the goal can be achieved [50]. While
many previous works implicitly assume that users know what
the robot is capable of doing and present preference learning
as an information retrieval problem [1, 52], recent work has
identified that reformulating robot learning as an exploratory
search interaction is useful for novice robot users [7].

Exploratory search interfaces encourage users to generate
more search data by allowing them to inspect, save, and filter
items in large databases [53–55]. By aggregating and scaling
these search data across millions of users, HCI researchers can
learn fine-grained profiles of user behaviors [56, 57].

In this work, we examine the effectiveness of exploratory
actions for learning features of robot behaviors that users care
about. We frame an exploratory action as an intuitive reasoning
process where a user quickly evaluates if a robot behavior is
somewhat aligned with their preferences. If it is, they select
that behavior to perform a more in-depth evaluation on the
physical robot. These perceptual processes are often modeled
with triplet losses both to capture how people make intuitive
decisions and to aggregate individual differences across user
populations [4, 58–61]. We use this insight from prior work to
learn features of robot behaviors that people care about from
the novel data source of exploratory actions.

III. LEARNING FEATURES FROM EXPLORATORY ACTIONS

In this section, we formalize our approach that leverages
exploratory actions to learn features of robot behaviors.

A. Preliminaries
We consider robot behaviors as trajectories in a fully-

observed deterministic dynamical system. We denote a behav-
ior as ω → !, which represents a series of states and actions:
ω = (s0, a0, s1, a1, ..., sT , aT ). These states and actions are
abstractly defined; they can be videos (behaviors in image-
space), audio (behaviors in frequency-space), or movements
(behaviors in joint-space). We assume that all behaviors ω → !
accomplish the task without resulting in errors, allowing users
to specify based on user preferences rather than the behavior’s
ability to achieve a goal [4, 26, 62]. While generating ! is not
the focus of this work, it can be completed through several
techniques, such as collecting demonstrations [26], performing

quality diversity optimization [63], and diversely combining
motion primitives [64].

We model a user’s preference as a reward function over
robot behaviors that maps the space of behaviors to a real
value: RH : ! ↑↓ R. The user’s reward function is not directly
observable, but can be inferred through interaction. Our goal
is to learn a reward function from user interactions, RH , that
maximizes the likelihood of the user performing the observed
interactions. Higher values of RH for a particular behavior
implies that the behavior is more preferred by the user.

Because the state space of robot behaviors can be very large
[65, 66], directly learning RH from state-action sequences is
intractable. To make reward learning tractable, several works
[1–3] assume that there exists a function ” that maps from the
state-action space to a lower dimensional feature space–a real
vector of dimension d: ” : ! ↑↓ Rd. This assumption allows
us to learn RH(”(ω)) from fewer user interactions.

B. Contrastive Learning from Exploratory Actions

To learn a ”, we leverage interaction data that we collected
through the robot customization process. Users naturally en-
gaged in exploratory search when they were presented with
many robot behaviors they could choose from to customize
the robot.

We formalize exploratory search as presenting a dataset
of behaviors to the user: Di = {ω0, ω1, ..., ωN} where each
ωi is sampled from the full database of behaviors !. In our
case, ωi is a video, a sound, or a head movement, but this
definition extends to other behaviors such as robot gaits, or
robot arm movements. This dataset can be generated using
various methods, including keyword search [67], collaborative
filtering [68], and faceted search [69]. Users can view brief
summaries of each behavior in the dataset to determine if the
behavior is relevant.

We mathematically model the user’s internal reasoning
process when making an exploratory action with the function
ε : D ↑↓ {0, 1}. If the user performs an exploratory action on
a behavior ωj from the dataset Di, then ε(ωj) = 1. If the user
does not perform an exploratory action on a behavior ωk from
the dataset Di, then ε(ωk) = 0. We use this definition of an
exploratory action to partition Di into two sets:

Dex.

i
:= {ω → Di|ε(ω) = 1};Dig.

i
:= {ω → Di|ε(ω) = 0}

(1)
For example, if a user is initially presented with D0 =

{ωA, ωB , ωC , ωD}, and they choose ωB and ωD to execute on
the robot, the explored dataset is Dex.

0 = {ωB , ωD} and the
ignored dataset is Dig.

0 = {ωA, ωC}. In our data collection
study, |Di| ↔ 100 to allow users to meaningfully search
through behaviors.

A common way to model and aggregate diverse internal
reasoning processes, such as ε, across a population of users is
to use a triplet loss [4, 58–61]. We adopt this loss function and
generate triplets of behaviors from on the explored and ignored
subsets. The triplets are formed by sampling two behaviors at



random from one subset and one behavior from the other sub-
set: (ω
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1 ) or conversely (ω
Dig.
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1 , ω
Dig.

i

2 , ω
Dex.

i

1 ).
The triplet loss encourages features from the same subset to be
more similar to each other than features from opposite subsets,
according to any metric function. We select the Euclidean
distance, d(ωi, ωj) = ||”(ωi)↗”(ωj)||22, as our metric because
other works found that Euclidean distances are an appropriate
metric for modeling perceptual processes [4, 58]:

Ltrip.(ωA, ωP , ωN ) = max [d(ωA, ωP )↗ d(ωA, ωN ) + ϑ, 0]
(2)

We refer to ωA as the anchor example, ωP as the positive
example, ωN as the negative example, and ϑ ↘ 0 as the margin
of separation between positive and negative examples. In our
case, the anchor and positive example are interchangeable as
they are both from the same unordered set, so we formulate
the triplet loss to be symmetric:

Lsym.(”) = Ltrip.(ωA, ωP , ωN ) + Ltrip.(ωP , ωA, ωN ) (3)

We formulate the CLEA loss as the sum of this symmetric
triplet loss across all of the datasets presented to all the users
in the signal design study:

LCLEA(”) =

|Dpop.|∑

i=0

∑

(ωA,ωP ,ωN )→Di

Lsym.(ωA, ωP , ωN ) (4)

where Dpop represents the set of all datasets presented to
the population of users that performed exploratory actions. We
learn features that minimize this loss to create a feature space
for robot behaviors that is consistent with the variations in the
population’s preferences.

C. Learning Preferences from Rankings.
We evaluated CLEA through behavior rankings, as in pre-

vious works [12]. We presented each user with a set of
behaviors to rank, referred to as a query, Q = {ω0, ω1, ...ωN}.
The user then ordered these options from their least favorite
behavior to their most favorite behavior by creating a mapping
ϖ : {0, 1, ..., N} ↑↓ {0, 1, ..., N} such that ϖ(Q) := ωε(0) ≃
ωε(1) ≃ ... ≃ ωε(N). The notation ωi ≃ ωj denotes that
behavior ωj is preferred over ωi.

We interpreted this ranking as a collection of pairwise
comparisons, as in previous works [11]. We adopted the
Bradley-Terry preference model [70] to model the probability
that the user chooses behavior ωj from the pair of behaviors
(ωi, ωj) based on the feature space mapping ” (i.e., learned
with CLEA or other self-supervised objectives):

P (ωi ≃ ωj |RH) =
eRH(!(ωj))

eRH(!(ωi)) + eRH(!(ωj))
(5)

To learn the user’s reward function, RH , we max-
imize the probability of all pairwise comparisons in-
duced by the rankings the user performed. We construct
a dataset containing all the users rankings, Dpref. =
{(Q0,ϖ0), (Q1,ϖ1), ...(QK ,ϖK)}. We minimize the total
cross entropy loss summed over all pairwise comparisons
across all rankings:

Fig. 3. Customization session setup. Participant designing signals for the
modified Kuri robot using the query-based interface.

Fig. 4. Exploratory search interface. The exploratory search interface the
participants used to design robot signals. Participants could explore visual,
auditory, and kinetic robot behaviors by scrolling through the behaviors and
by typing in search terms to filter results.

L(RH) =
∑

(Q,ε)↑Dpref

|Q|↓1∑

i=0

|Q|∑

k=i+1

↗ logP (ωε(i) ≃ ωε(k)|RH)

(6)
RH can be any computational model that can update its

parameters to minimize a loss function. In this work, we used
both neural networks and linear models to approximate RH

to compare with prior works, however other techniques such
as gaussian processes [71] are possible.

IV. COLLECTING EXPLORATORY ACTIONS FROM A ROBOT
CUSTOMIZATION SESSION

In this section, we describe our methodology for collecting
user exploratory actions in a free-form customization session
involving a Kuri robot performing an item-finding task.

A. Procedure
We adapted a signal design task from previous work [7]

to collect exploratory action data from users designing multi-



modal signals for a robot to express the robot’s state while
assisting the user in an item-finding task. Robot signaling
presents a wide array of unconstrained and diverse user
preferences, as opposed to purely functional tasks, where
users tend to converge to a small set of effective robot
behaviors [9, 71]. Additionally, signaling does not require
experimenters to “engineer” user responses by telling them
what their preference should be [4].

We recruited participants to design signals for a robot that
assists them in finding items around a room. This study
received ethical approval from our university’s Institutional
Review Board. Participants designed four state-expressive sig-
nals for a Mayfield Kuri robot [72]. We chose Kuri because
it was designed to be a low-cost consumer product capable
of natural interaction with non-expert users. For this study,
we modified Kuri with an added screen and backpack to hold
items, as shown in Fig. 3.

The participants were tasked with designing the following
four signals: (1) idle, indicating that the robot is ready to
receive a command; (2) searching, indicating that the robot is
actively looking for a requested item; (3) has-item, indicating
that the robot has the requested item in its backpack; and (4)
has-information, indicating that the robot found the requested
item but will need the user’s assistance to procure the item.

Each signal consisted of three separate modalities: (1)
visual: video played on the robot’s screen; (2) auditory: sound
played through the robot’s speaker; and (3) kinetic: robot head
movement. These three modalities correspond to common data
structures in robotics [4, 23, 73]: the visual modality is a
sequence of images, the auditory modality is a spectrogram,
and the kinetic modality is a sequence of joint angles. These
robot behaviors pulled from a database of 5,192 videos, 867
sounds, and 2,125 head movements1.

To engage in customizing the robot’s signaling behaviors,
users were presented with the RoSiD interface [74]. This
interface allowed users to specify preferences for the robots
in two ways. In the query-based interaction for customizing
robots, shown in Fig. 3, participants were presented with a set
of three options and chose their favorite among them. In the
exploratory search interaction, shown in Fig. 4, participants
were presented with up to one hundred options which they
could filter, scroll through, and test on the physical robot. We
designed the exploratory search interface to allow users to
explore robot behaviors without having to repeatedly answer
questions about rating the specific behaviors, which leads to
user fatigue and decreased motivation [75]. Participants were
allowed to freely choose either the query-based interface or
the exploratory search interface to design signals for the robot.
Participants were instructed to end the signal design when they
were satisfied with their signal.

After a participant designed all four signals, they interacted
with the robot to complete an item-finding task, where the
robot was piloted by an experimenter. The robot used the

1The full dataset of behaviors is available to view on our project page:
https://interaction-lab.github.io/CLEA/

signals the participant designed to complete the interaction
and allow the user to evaluate their design choices. Following
the interaction, participants were interviewed to determine how
they liked to design signals. The interview data are outside of
the scope for this paper. See Appendix A for more details.

B. Data Collection Results
In total, 25 participants (10 women, 3 non-binary, 12 men;

see Appendix A for more demographic information) were
recruited to design signals for the robot. Participants were
compensated with US$ 20 Amazon gift cards.

In total, participants spent an average of 415 seconds
using the query-based interface and 654 seconds using the
exploratory search interface. Each participant performed an
average of 15.32 query interactions and 72.72 exploratory
actions across the four signals. Query interactions took an
average of 27 seconds for a user to produce, compared to
an average of 9 seconds for exploratory actions. We define
exploratory actions as the robot behaviors from the exploratory
search interface that the user chose to evaluate on the real robot
because they appeared appealing, compared to the behaviors
that the user ignored because they seemed irrelevant. These
exploratory actions encompass all actions the user took to ex-
plore appealing robot behaviors, including examined behaviors
that were seemingly unrelated to the specific signal. These
unrelated explorations were generally actions users took to
learn more about the robot’s capabilities.

We use the data we collected from all users performing
exploratory actions to learn features of robot behaviors ac-
cording to Eq. 4. These features can be used for downstream
preference learning tasks, such as behavior comparisons [8–
10] or behavior rankings [11–13]. To select hyperparameters,
we used the data we collected from the query-based interface.
For more training details see Appendix C. Our previous work
showed preliminary efficacy for CLEA by evaluating with
data from the query-based interface using leave-one-out cross-
validation [76]. We expand on those results by recruiting a new
set of participants performing behavior rankings to evaluate
CLEA on a new user population, detailed in the next section.

V. USER STUDY EVALUATION

To evaluate the efficacy of learning feature spaces for robot
behaviors, we conducted an experiment with a new set of
participants. The participants ranked behaviors to generate
individual datasets that we could use to quantitatively test
different feature-learning algorithms.

A. Manipulated Variables
To evaluate the effectiveness of learned features using

automatically collected data, we evaluated seven total algo-
rithms for learning feature spaces. The first baseline was: (1)
Random, a randomly-initialized neural network that projects
each behavior to a vector. Random networks can be effective
feature learners, as they cannot overfit to data or learn spurious
correlations. (2) Pretrained, a large pre-trained neural network
to generate features. We used the vision-language foundation

https://interaction-lab.github.io/CLEA/


model X-CLIP [77] to create features from videos of the visual
and kinetic modalities. We used the audio foundation model
AST [78] to create features for the auditory modality. We also
evaluated two self-supervised baselines: (3) AE, an autoen-
coder that uses a self-supervised loss to learn features that re-
construct the behavior, (4) VAE, a variational autoencoder that
uses a self-supervised loss to both reconstruct and standardize
the distribution that the features come from. The AE and VAE
methods use the latent space of these models as features.
All of these self-supervised losses can also be combined
with CLEA, so we evaluate the following as our proposed
algorithms: (5) CLEA, (6) CLEA+AE, and (7) CLEA+VAE.
For all algorithms, we learned separate feature spaces for
each of the three signal modalities: visual, auditory, and
kinetic. The size of each feature space was a 128-dimension
vector, which was sufficient to capture diverse preferences for
complex behaviors [79]. Additional information on the training
processes is presented in Appendix C.

B. Procedure

To evaluate the generalizability of the features we learned,
we collected ranking data from a separate set of 42 new
participants (19 women, 4 non-binary, 19 men; more details
in Appendix A). Each participant completed ten behavior
ranking trials for a particular modality and signal, with each
ranking consisting of five robot behaviors.

The five behaviors we presented to the user for each ranking
were selected based on the final customized signals in the
customization session described in Sec. IV, because previous
work has shown that using other users’ preferences is a good
initialization for new users [7, 26, 62, 80]. To generate each of
these five behaviors, we first randomly sampled a customized
behavior from the customization session and then sampled one
of the six feature-learning algorithms. Then, we calculated the
behavior in the full database of behaviors that minimized the
feature distance to the custom behavior we sampled, according
to the feature space we sampled.

In order to fully evaluate the proposed algorithms, we must
know the user’s overall favorite behavior to use as a ground-
truth preference. To achieve this, the fifth and tenth ranking
used the top-ranked signals from the previous ranking trials to
create a “super ranking”. The highest-ranked behavior in the
final ranking trial represents the participant’s overall favorite
behavior.

C. Hypotheses

A survey by Bobu et al. [3] identified four criteria that
constitute good representations for downstream preference-
learning tasks: (1) Completeness, the ability of a representation
to capture a user’s true preferences, (2) Simplicity, the ability
to recover user preferences from linear transformations of the
representations, (3) Minimality, the ability of a representation
to exist in low-dimensional spaces, and (4) Explainability,
the ability of a representation to be compatible with existing
explainability tools. We adopt this framework for our analysis
and present our additional results in Appendix H.

Fig. 5. Completeness results. Across three modalities, feature spaces using
CLEA are able to accurately predict user preferences. Error bars show mean
standard error across participants.

We evaluate these four criteria with the data collected from
the 42 participants in Sec. V-B. We split the data from each
participant into 70% for training our reward models, and 30%
for evaluating our reward models.

Based on this framework, we tested four hypotheses com-
paring CLEA features to self-supervised features:
(H1) Exploratory actions reflect user preferences, so the most

complete features will leverage CLEA;
(H2) Exploratory actions align with preference teaching tasks,

so the most simple features will leverage CLEA;
(H3) Exploratory actions efficiently express user preferences,

so the most minimal features will leverage CLEA; and
(H4) Exploratory actions are semantically meaningful, so the

most explainable features will leverage CLEA.

D. Results

Evaluating Completeness. Completeness refers to the fea-
ture’s ability to capture all relevant information to understand
how a user ranks robot behaviors. To evaluate completeness,
we aim to learn a neural network reward model that can
accurately model the choices participants made during the
ranking experiment. We quantitatively measure this with the
test preference accuracy (TPA) metric [4], which measures
the accuracy of a trained model to predict the user’s choice in
an unseen test set. To predict user choices, we used the 128-
dimensional feature spaces for the six algorithms as input to a
neural network that estimated the participant’s internal reward.
This reward network that consisted of two fully connected
layers with hidden dimensions of 256 units to output a single
value. The training objective maximized the probabilities of
the selected behaviors in the training set using Eq. 5.

The TPA of all three modalities is shown in Fig. 5. We show
that CLEA+AE had the highest TPA in modeling participant’s
choices in the Visual and Auditory modality, determined by t-
tests (all p < .05). In the Kinetic modality, CLEA+AE, CLEA,
and Random were tied for the highest TPA, but had a higher
TPA than the other methods (p < .05). CLEA features contain
complete information to model user preferences, supporting
H1. For an extended statistical anaylsis, see Appendix E.



TABLE I
SIMPLICITY RESULTS. FOR EACH MODALITY, WE FOUND THE AREA UNDER THE CURVE (AUC) OF THE ALIGNMENT METRIC OVER 100 PAIRWISE

COMPARISONS ACROSS FEATURE DIMENSIONALITIES. ASTERISKS INDICATE BEST-PERFORMING ALGORITHM WITHIN EACH DIMENSION (ALL p < .05).

Visual Auditory Kinetic
Dimension 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

Random .005 .024 .018 .013 .004 -.001 .134 -.001 .000 .000 .003 .179 .091 .187 .272
Pretrained .127 .056 .047 .042 .035 .267 .022 .021 .025 .025 .051 .042 .051 .057 .055

AE .024 .014 .011 .014 .007 .038 .065 .042 .080 .015 .014 .227 .330* .321 .154
VAE .269 .335* .247 .180 .033 .234 .174 .117 .083 .077 .207 .251 .192 .203 .346

CLEA .012 .261 .245 .090 .044 .058 .002 .142 .113 .046 .284* .224 .255 .345 .217
CLEA+AE .315* .219 .330 .163 .275* .260 .023 .141 .015 .140 .079 .208 .192 .207 .147

CLEA+VAE .196 .295 .376* .293* .147 .438* .343* .236* .198* .175* .009 .260* .165 .373* .377*

Fig. 6. Minimality results. Alignment of a linear reward model across numbers of pairwise comparisons for the smallest sized feature space. Shaded region
indicates mean standard error.

Evaluating Simplicity and Minimality. A feature space
is simple if it can model a user’s preference with a linear
reward model, and it is minimal if the dimensionality of the
feature space that is used as input to this reward model is
small while still accurately capturing user preferences [3].
Simple linear reward models are practically useful compared to
complex neural network reward models because linear models
are easier to store, interpret, and compare [81]. To quantify
both minimality and simplicity, we used the area under the
curve of alignment (AUC Alignment) [8, 9, 12] over 100
pairwise queries. We evaluated AUC Alignment across feature
spaces of five dimensions: 8, 16, 32, 64, and 128. The simple
linear model to estimate a user’s reward was described as
RH(ω) = ϱ · ”(ω). We estimated ϱ using Bayesian inverse
reward learning, as in previous works [8, 9, 11].

To calculate AUC Alignment, we sequentially updated the
estimate of the user’s preference ϱest. after observing each
ranking action they made, decomposed into pairwise queries.
We calculated the alignment of the user’s true preference
ϱtrue and estimated preference, ϱest., following the equation,
1
M

∑
ϑest.→”

ϑtrue·ϑest.

||ϑtrue||2·||ϑest.||2 , from prior work [8, 9]. We set
the user’s true preference, ϱtrue, as the vector corresponding to
the user’s top-ranked signal. We used the area under the curve
of alignment (AUC Alignment) [8, 9, 12] over the number of
queries as the metric to assess simplicity and minimality. A
higher AUC Alignment indicates that we learned the user’s

preference more accurately and with fewer queries. We show
the alignment curve in Fig. 6.

To evaluate simplicity, we compared AUC Alignment of
our simple model across all five feature space dimensions to
show that a simple model effectively models preferences for
all dimensions; the results are shown in Table I. We observed
that across all modalities, a CLEA-based feature space has
the highest AUC Alignment in 13 of the 15 experiments,
with CLEA+VAE being the best on 10 of these experiments.
Overall, training with the CLEA objective resulted in simple
representations that were useful across different sized dimen-
sions, supporting H2. Further analysis is in Appendix F.

To evaluate minimality, we compared AUC Alignment for
only the 8-dimensional feature space to determine if CLEA can
model user preferences for low-dimensional feature spaces.
The results are shown in Fig. 6. We found that CLEA+AE
has the highest AUC Alignment in the Visual modality,
CLAE+VAE has the highest AUC Alignment in the Auditory
modality, and CLEA has the highest AUC Alignment in the
Kinetic modality. We conclude that using a loss function that
includes the CLEA objective results in features that minimally
elicit user preferences, supporting H3. For additional analysis
see Appendix G.

Evaluating Explainability. A common explainability tech-
nique for neural systems is explanation by example [82, 83].
In this framing, the user is presented with training examples,



Fig. 7. Explainability Results. We examined the similarity between top-
ranked signals from the ranking user study and the nearest exemplar signal
from the robot customization session. We found that CLEA-based feature
spaces have higher similarities, facilitating explanation by example.

called exemplars, that are near unseen test samples to provide
an interpretation of learned feature spaces. This approach has
been use to explain feature spaces used for clustering [84],
image recognition [85], and language [86]. In this work, we
quantitatively evaluate explainability of the feature space by
measuring the cosine similarity of the top-ranked signals from
the ranking study (Sec. V-B) to their nearest exemplar from
the customization session (Sec. IV). We show the similarity
scores for each modality in Fig. 7.

We found that the CLEA feature space resulted in the
highest similarity between top-ranked signals and the nearest
exemplars for both the visual and auditory modality. The
CLEA+VAE feature space demonstrated the highest similarity
in the Kinetic modality. These results indicate that CLEA-
based feature spaces are more conducive to explanation by
example than self-supervised feature spaces, thus CLEA re-
sults in the most explainable feature spaces, supporting H4.

VI. DISCUSSION AND LIMITATIONS

Our results demonstrate the efficacy of learning useful fea-
tures for eliciting preferences by leveraging data from natural
user interface interaction. By incorporating exploratory search
concepts into interfaces for teaching robots, we can scale
data collection while also providing users with an intrinsically
motivating task. We performed evaluations across three modal-
ities of state-expressive signals in robots—visual, auditory, and
kinetic—and found that using CLEA significantly increased
performance in all modalities and evaluation criteria.

CLEA can be readily combined with any algorithm that
learns feature spaces for eliciting preferred robot behaviors by
learning a lower-dimensional embedding of the behaviors. We
demonstrated CLEA’s use with self-supervised losses; it can
also be used with other methods of learning feature spaces
such as trajectory similarity queries [4], multi-task learning
[44, 45], and labelled behaviors [87, 88].

We developed an algorithm for learning feature spaces using
exploratory search actions. This requires users to be able to

briefly review many behaviors at a high level before deciding
which of these behaviors might be relevant and warrant further
exploration. We used visual summaries for all modalities–a
video frame for the visual modality, a spectrogram for the
auditory modality, and a graph of joint angles for the kinetic
modality. These were interpretable by the participants, but
they may not be the most effective means of representing
the underlying behaviors. Users may be better at interpreting
natural language descriptions [89], tags that describe the
behavior [54], or animated gifs [90]. Future work can explore
how robot behaviors can be summarized to non-expert users in
ways that allow them to most efficiently search through robot
behavior options. Understandable summaries are especially
needed for users to perform exploratory search with more
complex robot behaviors, such as different gaits for quadruped
robots or dexterous manipulation skills for high degree of
freedom manipulators.

The robot behaviors that users explored often appeared
unrelated to the user’s personal preferences, but these seem-
ingly random explorations were still indicative of other users’
preferences, as demonstrated by the transferability of CLEA
to distinct populations. We also assumed that users would be
motivated to perform this exploratory search since they were
unfamiliar with what the robot was capable of [50]. If users
are already familiar with a particular robot, they may not be
motivated to perform exploratory actions because they have
already found their preferred robot behaviors. This familiarity
could decrease the efficacy of CLEA as a framework for
learning feature spaces in already adopted robots.

We also found that additional loss terms, such as the
reconstruction term and the KL-divergence term, were only
sometimes helpful for training with CLEA, depending on the
underlying data structures used. We found that the additional
reconstruction loss and KL-Divergence loss were often helpful
in video and sound data structures but could hinder prefer-
ence learning for joint state sequences. This effect is due
to the social interpretations interfering with these additional
terms. For joint state behaviors, gestures portraying fear and
excitement have very similar joint states, but vastly different
social interpretations. CLEA aims to separate these features,
while the reconstruction term brings them together. While the
optimal loss terms can only be determined experimentally, we
presented a set of metrics for evaluation that can systematically
determine these terms, in accordance with the qualities of good
feature spaces [3].

Conclusion. We present contrastive learning from ex-
ploratory actions (CLEA), an algorithm to leverage a novel
data source of interactions that users automatically perform
when teaching robot systems. We showed that CLEA can be
used to learn feature spaces that reflect underlying personal
preferences, represent robot behaviors in low-dimensional vec-
tors, quickly elicit user preferences, and are explainable.



REFERENCES

[1] A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement learn-
ing.” in Icml, vol. 1, 2000, p. 2.

[2] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning, 2004, p. 1.

[3] A. Bobu, A. Peng, P. Agrawal, J. A. Shah, and A. D. Dragan,
“Aligning human and robot representations,” in Proceedings of the
2024 ACM/IEEE International Conference on Human-Robot Interaction,
2024, pp. 42–54.

[4] A. Bobu, Y. Liu, R. Shah, D. S. Brown, and A. D. Dragan, “Sirl:
Similarity-based implicit representation learning,” in Proceedings of the
2023 ACM/IEEE International Conference on Human-Robot Interaction,
2023, pp. 565–574.

[5] K. Lee, L. Smith, and P. Abbeel, “Pebble: Feedback-efficient interactive
reinforcement learning via relabeling experience and unsupervised pre-
training,” arXiv preprint arXiv:2106.05091, 2021.

[6] M. Yang and O. Nachum, “Representation matters: Offline pretraining
for sequential decision making,” in International Conference on Machine
Learning. PMLR, 2021, pp. 11 784–11 794.

[7] N. Dennler, D. Delgado, D. Zeng, S. Nikolaidis, and M. J. Matarić, “The
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